

- Graphene based sensors are one example of novel nanodevices
- Understanding Sensor ⇔ adsorbent noncovalent interactions is the key to improve

sensor performance

- CO₂ / Graphene is an excellent model system to study
- GOAL: Assess method/model combination obtain most accurate adsorption energies
 Methods:
- 9 cluster models / 3 adsorption sites / 2 orientations
- Coupled-Cluster (CCSD(T)) and experimental data is used as reference

For accurate interaction energies, combine density functional theory with symmetry adapted perturbation theory and extrapolate the surface size to infinity

Results 1: Method Assessment for Benzene Against CCSD(T)

- All functionals predict the same relative complex stabilities
- Parallel are more stable than orthonormal orientations
- DSD-BLYP-D3 provides best energies & geometries compared to CCSD(T)
- All interaction energies are too small compared too experiment → larger models are necessary

Table 1: Interaction energies (given in kJ/mol) for CO₂ on benzene, at different adsorption sites and orientations, calculated with several electronics structure methods.

Glob.bridgetophollowbridgetophollowmin.par.par.par.orth.orth.orth.

Results 2: Size-dependency

- Relative stabilities are sizeindependent
- The larger the surface model, the stronger the adsorption
- Extrapolate the surface size: $\lim_{x \to 0} \left(\frac{m}{x} + n\right),$ with x-number of carbon atoms
- Interpolation with DSD-BLYP-D3/SAPT yield excellent agreement with experiment

Table 2: Extrapolated interaction energies (in kJ/mol) of CO2 adsorbed on an artificial infinite graphene model calculated with several density functionals and SAPTO.

Global	bridge	top	hollow	bridge	top	hollow
Min	par.	par.	par.	orth.	orth.	orth.

CCSD(T)	-7.6	-7.2	-6.9	-7.1	-0.4	-0.4	-0.5
PBE-D3//SAPT0	-11.9	-11.4	-10.9	-10.7	-1.0	-1.1	-1.4
PBE-D3	-10.2	-9.9	-9.6	-9.5	-2.1	-1.7	-1.7
B3LYP-D3	-10.9	-10.5	-10.2	-10.0	-0.9	-0.9	-1.3
ωB97X-D3	-11.3	-10.9	-10.5	-10.3	-1.5	-1.0	-1.0
ωB97X-V	-10.6	-10.2	-9.8	-9.8	-1.8	-1.2	-1.2
DSD-BLYP-D3	-9.2	-8.8	-8.4	-8.4	-1.1	-0.8	-0.8

PBE-D3	-16.3	-16.3	-15.6	-14.9	-8.6	-8.6	-9.4
ωB97X-V	-18.6	-18.5	-17.4	-16.7	-9.7	-9.7	-10.4
DSD-BLYP-D3		-18.9	-18.0	-17.3	-10.8	-10.3	-11.6
PBE-D3//SAPT0	-24.8	-24.8	-23.2	-22.0	-14.2	-14.1	-15.9
DSD-BLYP-D3//SAPT0		-26.8	-25.1	-23.8	-16.2	-15.2	-18.2
PBE-D3 (periodic)		-15.6	-15.2	-14.4	-8.5	-8.5	-9.0
Experiment [2]	30.1 ± 1.5						
Experiment [3] 26.1 ± 2							

CONTACT PERSON

Christopher Ehlert <u>Christopher.Ehlert@h-its.org</u> REFERENCES

[1] Ehlert, Piras, Gryn'ova, 2020, Manuscript under review
[2] Takeuchi et al. The Journal of Physical Chemistry C, 121(5), 2807–2814 (2017). http://dx.doi.org/10.1021/acs.jpcc.6b11373
[3] Smith et al., The Journal of Physical Chemistry A, 123(15), 3248–3254 (2019). http://dx.doi.org/10.1021/acs.jpca.9b00674

