

GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO

INSTITUT

Graphene and Boron-doped Graphene by Pulsed Laser Deposition

Y. Bleu (1), F. Bourquard (1), A.-S. Loir (1), V. Barnier (2), F. Christien (2), C. Farre (3), C. Chaix (3), J. Galipaud (4), F. Dassenoy (4), F. Garrelie (1), C. Donnet (1) Univ Lyon, UJM-Saint-Etienne, CNRS, Institute of Optics Graduate School, Laboratoire Hubert Curien UMR5516, F-42023 St-Etienne, France

(2) Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, F-42023 Saint-Etienne, France

(3) Institut des Sciences Analytiques, UMR 5280 CNRS, Université de Lyon, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France (4)Université de Lyon, LTDS, UMR CNRS 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F69134 Ecully Cedex, France

context and Objective > Very few study on graphene synthesis using

- Challenge: Synthesis and nanostructure control!
- PVD process. PVD advantages are:
- Thickness control of carbon/metal coatings.
- Doping (B, N...) control in the carbon coating.
- Lower Temperature (vs CVD)

- Very well control of Doping (B, N...) at all
- concentrations, by reactive PLD or co-PLD Interest of thermal heating in situ during PLD

ABEX MANUTECH-SISE

undoped Graphene (G)

- > Graphene growth mechanism study
- > Transfer-free graphene synthesis via PLD and RTP

Boron doped Graphene (B-G)

- > Complementary to N-doping as a p-type doping raising hole concentration
- > Versatility and simplicity of co-PLD for B incorporation control

Growth mechanism of Graphene from in-situ XPS during thermal heating

B-G produced by PLD for the first time

Easier in-plane incorporation Reduced lattice stress Preserving mechanical properties while changing

Chemical characterizations: XPS - Raman

Boron doping increases defect level and affects the

BG2.5%

Upshifts of G and 2D peaks with the boron doping.

Electrochemistry results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 La

Transfer-free undoped graphene via PLD and RTP

conclusions and

- Easy route to produce few-layer Graphene and doped graphene with controlled dopant
- incorporation, by co-ablation PLD (B). No evidence of defect-free, single layer of graphene due to the energetic C species.
- Optimization of the growth conditions to obtain SLG.
- Investigations of the electronics properties of G and B-G.

Acknowledgments

Boron content control with systematic loss

BC3, BC2O and BCO2 bonds confirms substitutional

This work is supported by LABEX MANUTECH-SISE (ANR-10-LABX-0075) of Université de Lyon in the framework of the "Investissements d'Avenir" (ANR-11-IDEX-0007) program managed by Agence Nationale de la Recherche (ANR).

Contact person

DONNET Christophe

Christophe.Donnet@univ-st-etienne.fr Professor at University Jean Monnet Saint-Etienne – France - LabHC

- Geim & Novoselov, Nat Mater. 2007 Agnoli et al., J. Mater. Chem. A, 2016 Maddi et al., Scientific Reports 2018
- Bourquard et al., Materials 2019
 - Bleu et al., Carbon 2019
 - Bleu et al., Mat Chem Phys. 2019

