

GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO

Study of the URB M.P. Bernícola ¹ , M. Del Universitat Autonoma de Barcelona ¹ Catalan Institute of Nanoscience and Na Image: State Construction of Science and Technology Study of the	graphene oxide reduction and its impact in biosensing .gà ¹ , X. Song ² , L. Ferrer ¹ , C. Casiraghi ² , J.A. Garrido ¹ , E. del Corro ¹ notechnology (ICN2), ² School of Chemistry, University of Manchest Manchester, UK	<text><text></text></text>
INTRODUCTION	EXPERIMENTAL	
WASP Project aims to develop an electrochemical biosensors for fast detection of biomarkers. Use the 2D ink print technique to prepare flexible electrodes.	rGO: 2D ink print in flexible substrate (polyimide) developed by University of Manchester	Morphological characterization
 Printed circuit rGO Biocompatible Low cost Good electron transfer kinetics Sensitivity to Specific analytes 	Peeling integration	Witec, Laser 488 nm Power 0,2 mW 1800 gr/nm, 50x AFM

Fast detection of biomarkers

Indirect measurement method of glucose by H₂O₂ detection

Thermal annealing at 350°C during 8 h after fabrication

Electrochemical techniques:

Cyclic voltammetry (CV) 50 mV/s

Potentiostatic electrochemical impedance spectroscopy (PEIS) at 0,2 V vs Ag/Ag/AgCl

Asylulli Oligili+ Tapping mode Cantilever 150 kHz; 9 N/m

ELECTRODE CHARACTERIZATION

INDIRECT DETECTION METHOD: ELECTROCHEMICAL SENSING OF H_2O_2

Raman Spectroscopy and AFM

Lisishti						
2 μm			0		-	
	and a started	- 40		STATISTICS.	- 40	
	Martin Martin	60		AND CON	⁻ 60	
	Rms 21 nm	80	R	ms 15,7 nm	- 80	
	anneanng	100		anneanng	-100	
	Before thermal	120		After thermal	⁻ 120	

Electrochemical characterization: before and after thermal annealing

- Thermal annealing process increases the electrode stability. Before the thermal annealing treatment, electrode needs different cycles to be more stable
- Capacitance decreases with the material reduction degree

CONCLUSION

- rGO reduction degree increases with the thermal annealing process
- Electrode stability of rGO is dependent of the reduction degree
- rGO is sensible to the H_2O_2 variation. Electrode resistance decreases due to the material oxidation by the H_2O_2
- rGO is sensible to the glucose changes. The reduction degree of carbon material affects to the sensitivity

rGO is able to sense below 1mM of glucose with a 1100 nA/mM glucose of sensitivity \bullet whitout thermal annealing

ACKNOWLEDGEMENT

This work was funded by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 825213 (WASP) and the Spanish MINECO national research plan with No. FIS2017-85787-R (2DTecBio). The ICN2 is funded by the CERCA programme / Generalitat de Catalunya and supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, grant no. SEV-2017-0706).

GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

CONTACT PERSON

María del Pilar Bernícola García pilar.bernicola@icn2.cat +34 937374605 PhD Student Advance electronic materials and devices group, ICN2 Universitat Autonoma de Barcelona

REFERENCES

[1] Mutyala, S.; Mathiyarasu, J. A Reagentless Non-Enzymatic Hydrogen Peroxide Sensor Presented Using Electrochemically Reduced Graphene Oxide

Modified Glassy Carbon Electrode. Mater. Sci. Eng. C 2016, 69, 398–406.

[2] Díez-Betriu, X.; Álvarez-García, S.; Botas, C.; Álvarez, P.; Sánchez-Marcos, J.; Prieto, C.; Menéndez, R.; De Andrés, A. Raman Spectroscopy for the Study of Reduction Mechanisms and Optimization of Conductivity in Graphene Oxide Thin Films. J. Mater. Chem. C 2013, 1 (41), 6905–6912

[3] Gnana Kumar, G.; Justice Babu, K.; Nahm, K. S.; Hwang, Y. J. A Facile One-Pot Green Synthesis of Reduced Graphene Oxide and Its Composites for Non-Enzymatic Hydrogen Peroxide Sensor Applications. RSC Adv. 2014, 4 (16), 7944–795

