Edge state crossing in a multi-band tight-binding model of graphene

Thorben Schmirander

Marta Prada, Daniela Pfannkuche I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9 20355, Hamburg <u>Thorben.Schmirander@physik.uni-hamburg.de</u>

The description of Dirac electrons in graphene is performed using a multi-band tight binding model [1]. When considering a finite graphene sample, edge states cross the band gap and connect the Dirac cones at the K and K' point. The chirality is the essence of the topological character of graphene [2], causing these gap crossings.

In this work, we include electron-electron interactions via a self-consistent mean-field approach and different magnetic phases of the edge states are examined. Various types of spin-orbit coupling modify the topological character of the edge states [2,3]. We discuss the influence of intrinsic, Bychkov-Rashba-type and strain-induced spin-orbit coupling on the crossing. We evaluate different observables, such as chirality and magnetization, and discuss the influence of spin-orbit coupling on the topological nature of graphene.

References		
[1]	Konschuh, S., Gmitra, M. and Fabian, J. Phys. Rev. B 82 (2010) 245412	
[2]	Kane, C. L . and Mele, E. J., Phys. Rev. Lett. 95 (2005) 226801	
[3]	van Gelderen, R. and Morais Smith, C. Phys. Rev. B 81 (2010) 125435	
Figures	5	

Figure 1: The band structure of a semi-infinite sample of graphene with periodic boundary conditions along x and open boundary conditions along y. The Bychkov-Rashba-type spin orbit coupling modifies the dispersion relation at the K and K' points and thus the crossing of the band gap.

	Row Number
	<u> </u>
0 ₀ 0 ₀ -	2
0000	<u> </u>
000-	<u> </u>
0000	5
000-	6
0000	- 7
000-	- 8
000	9
	10

Figure 2: The magnetisation of electrons located at the edges as a time-reversal invariant selfconsistent solution to the mean-field interacting system.