Demonstration of Ultra-small MIR Acoustic-graphene-plasmon Cavities Based on Magnetic Resonators

Itai Epstein¹

Itai Epstein,¹ David Alcaraz,¹ Zhiqin Huang,^{2, 3} Jean-Paul Hugonin,⁴ Varun-Varma Pusapati,¹ Avinash Kumar,¹ Xander Deputy,^{2,3} Tymofiy Khodkov,¹ Tatiana Rappoport,⁵ Nuno M. R. Peres,^{5,6} David R. Smith,^{2,3} and Frank H. L. Koppens^{1,7}

1 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain,2 Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA, 3 Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, NC, 27708, USA, 4 Laboratoire Charles Fabry, Institut d'Optique Graduate Scool, CNRS, Université Paris-Saclay, 91127 Palaiseau, France, 5 Centro de Física and Departamento de Física and QuantaLab, Universidade do Minho, P-4710-057 Braga, Portugal, 6 International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal,7 ICREA – Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

Itai.epstein@icfo.eu

Abstract: Acoustic-graphene-plasmons (AGPs) are highly confined electromagnetic modes, which carry extreme momentum and low loss in the Mid-infrared (MIR) to Terahertz (THz) spectra. Here, we demonstrate a new way to excite highly confined AGPs from the far-field, with localized graphene-plasmon-magnetic-resonators (GPMRs). This approach enables the efficient excitation of single AGP resonators, which are able to confine MIR light to ultra- small mode-volumes that are ~ $5\cdot10^{+10}$ times smaller than their free-space wavelength.

The GPMRs are formed by fabricating specialized structures on top of a monolayer graphene capped with hBN, which support the generation of magnetic resonances. The gate dependent extinction spectra, as measured from a GPMR device in an FTIR spectrometer, is shown in Fig.1 (left panel). The AGP resonances and their tunable response with the change in the graphene Fermi-level can be clearly seen, together with their well-known hybridization with the surface-optical-phonons of the SiO2 substrate and h-BN layer. The calculated mode-volume normalized to free-space volume, $(\lambda_0)^3$, is shown in Fig.1 (right panel) for different graphene-structure distance "d", reaching a huge confinement factor of ~5 $\cdot 10^{+10}$ at 1nm spacing.

Our approach provides direct access to the extremely small mode-volumes of AGPs, enabling a new platform for strong light-matter interaction and efficient AGP-based devices, such as photodetectors and sensors, in the long wavelength spectrum.

Figure 1: (a) Measured GPMR device extinction spectra for different gate voltages (colors). The triangle marks the AGP peak and the downward arrows mark the location of the h-BN and SiO2 surface-phonons. (b) Calculated normalized mode volume of the GPMR (blue curve) compared to its equivalent metal-based magnetic resonance in the visible spectrum (red curve), showing several orders of magnitude smaller confinement factor of MIR the GPMR system.

Graphene2020