Grazia Giuseppina Politano¹

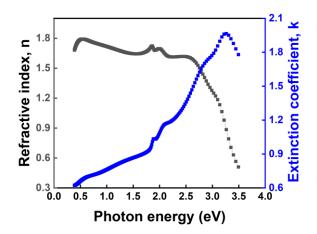
Marco Castriota^{1,2}, Maria Penelope De Santo^{1,2}, Mario Michele Pipita³, Giovanni Desiderio², Carlo Vena¹, Carlo Versace^{1,2}

1. Dipartimento di Fisica, Università della Calabria 87036 Rende CS, Italy

2. Licryl CNR/Nanotec c/o Dipartimento di Fisica, Università della Calabria 87036 Rende CS, Italy

3. Notredame s.r.l., c/o Dipartimento di Fisica, Università della Calabria, Italy Dipartimento di Fisica, Università della Calabria 87036 Rende CS, Italy Contact@E-mail grazia.politano@unical.it

In the field of Transition Metal Dichalcogenides (TMDCs), molybdenum disulfide (MoS₂) has attracted an outstanding interest due to several applications. MoS₂ has potentialities not yet fully realized in solution-based applications. However, the lack of knowledge of the optical properties of MoS₂, especially in the infrared range, has significantly limited his use in many exciting photonic fields. In this work, the broadband optical properties of MoS₂ films deposited by spin-coating onto Si/SiO₂ substrates were studied by means of Variable Angle Spectroscopic Ellipsometry (VASE).


The morphological and the structural properties of the samples were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Micro-Raman Spectroscopy.

Micro-Raman spectroscopy measurements reveal the presence of $2H-MoS_2$ and $1T-MoS_2$ phases. The optical properties of the films show a mid-gap state at ~ 0.6 eV, not reported in an ellipsometry work before, induced by defects in the MoS_2 samples.

References

- [1] Chen et al, Solid State Commun. 14 (1974) 857-860
- [2] Reshmi et al , Nanotechnology. 29 (2018) 205604
- [3] Salehi et al, A, Surf. Sci. 651 (2016) 215–221
- [4] C. Yim et al, Appl. Phys. Lett. 104 (2014) 103114

Figures

Figure 1: Estimated dispersion laws of MoS₂ films spin-coated onto Si/SiO₂ substrates by Variable Angle Spectroscopic Ellipsometry characterization.