L. Pimpolari¹

G. Calabrese¹, S. Conti¹, R. Worsley², S. Majee², D. K. Polyushkin³, M. Paur³, G. lannaccone¹, M. Macucci¹, T. Mueller³, C. Casiraghi², G. Fiori¹ ¹Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy ²Department of Chemistry, University of Manchester, Manchester, UK

³Institute of Photonics (TU Wien), Vienna, Austria

lorenzo.pimpolari@ing.unipi.it

Atomically thin films of MoS₂ have emerged as promising building blocks for flexible electronics. Recently, we reported high-performance CVD-grown MoS₂ field effect transistors (FETs) on paper with inkiet-printed Ag contacts and h-BN dielectric [1]. Here, for the first time, we study the low-frequency noise (LFN, or 1/f noise) behaviour on the same devices, which can provide useful insights on the physical mechanisms at play in the fabricated FETs. Fig. 1 (a) shows a photograph and an optical micrograph of a fabricated FET. A typical FET transfer characteristic is shown in Fig. 1 (b). LFN is expressed using Hooge's law: $S_{I_{DS}} = A I_{DS}^2 / f^{\gamma}$, where $S_{I_{DS}}$ is the power spectral density (PSD) of the channel current (I_{DS}), A the noise amplitude, and f the frequency. The PSD and the normalized PSD of I_{DS} for different drain voltages (V_{DS}) are shown in Fig. 1(c), and its inset, respectively. In the latter, the spectra nearly overlap, indicating a good normalization. Fig. 2 (a) shows the PSD of I_{DS} for different gate voltages (V_{GS}) . The dependence of 1/A and γ (the exponent of f) on V_{GS} is reported in Fig. 2 (b). The linear fit of 1/A suggests that mobility fluctuations are at the origin of the observed noise, in agreement with the Hooge model, and γ ~1. Finally, Fig. 2 (c) shows the Hooge parameter $\alpha_H = A \cdot N$, where N is the total number of carriers in the channel. This parameter is comparable with those of mechanically exfoliated monolayer MoS₂ FETs [2].

References

[1] S.Conti et al., arXiv:1911.06233v1

[2] V. K. Sangwan et al., Nano Letters (2013)

Figures

Figure 1: (a) Optical image of the paper substrate and of a FET (scale bar: 200 μ m). (b) Transfer characteristic of a studied FET. Inset: Schematic image of the device. (c) PSD of the channel current for V_{DS} from 20 mV to 1 V, with V_{GS} = 6 V. Inset: normalized PSD with respect to the current.

Figure 2: (a) PSD of the channel current for V_{GS} ranging from 2 V to 8 V, with V_{DS} = 1 V. (b) Noise amplitude (left axis) and exponent of the frequency (right axis) as a function of gate voltage. (c) Hooge parameter as a function of V_{GS}.