Tunability of the Photoluminescence and Coupled Charge Transfer Dynamics in Monolayer MoS₂ Decorated with WS₂ Quantum Dots ## Larionette P. L. Mawlong¹ Abhilasha Bora² and P. K. Giri^{1, 2} ¹Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati -781039, India. ²Department of Physics, Indian Institute of Technology Guwahati, Guwahati -781039, India. larionette@iitg.ac.in Atomically thin transition metal dichalcogenides (TMDs) are semiconductor films with excellent electrical and optical properties, which are promising candidates for a wide range of optoelectronic applications. Herein, we systematically study the tunability of the photoluminescence (PL) of the monolayer MoS₂ (1L-MoS₂) decorated with WS₂ quantum dots (WS₂ QD). The room temperature PL spectrum of pristine 1L-MoS₂ is quenched with its decoration with WS₂ QDs (see Figure 1). From the Kelvin probe force microscopy analysis, we have established a decrease in the work function of 1L-MoS₂ with the decoration of WS₂ QDs. Using the four-energy level model, a detailed quantitative analysis involving coupled charge transfer was employed to explain the redshift and the systematic decrease in the intensity of the PL peak in 1L-MoS₂/WS₂ QD heterostructure. The modulation of the PL spectrum in the heterostructure is attributed to the increase in the formation of negative trions through the charge transfer from WS₂ QD to the 1L-MoS₂ and thus making the 1L-MoS₂ heavily n-type doped, with change in carrier density, $\Delta n_e \sim 1.5 \times 10^{13}$ cm⁻², as shown in Figure 2. This study establishes the contribution of defects and concentration dependent rate kinetics in the coupled charge transfer dynamics in 1L-MoS₂, and it lays out a convenient strategy to manipulate the optoelectronic properties of 1L-MoS₂ for various applications. **Figures** **Figure 1:** Comparative PL spectra of pristine 1L-MoS₂, WS₂ QDs and 1L-MoS₂/WS₂ QD HS (with 24 mg/L concentration of WS₂ QD) measured with 488 nm excitation using a micro-Raman system. **Figure 2:** Calculation of electron density (n_e) in the heterostructure based on the law of mass action; the inset shows n_e as a function of the concentration of WS₂ QDs.