Evidence of weakly dispersive band in twisted bilayer graphene from nano-ARPES

Simone Lisi¹

Xiaobo Lu^{2*}, Tjerk Benschop^{3*}, Tobias A. de Jong^{3*}, Petr Stepanov², Jose R. Duran², Florian Margot¹, Irène Cucchi¹, Edoardo Cappelli¹, Andrew Hunter¹, Anna Tamai¹, Viktor Kandyba⁴, Alessio Giampietri⁴, Alexey Barinov⁴, Johannes Jobst³, Vincent Stalman³, Maarten Leeuwenhoek³, Kenji Watanabe⁵, Takashi Taniguchi⁵, Louk Rademaker⁶, Sense Jan van der Molen³, Milan Allan³, Dmitri K. Efetov², Felix Baumberger^{1,7}

¹Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

²ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain

³Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

⁴Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy

⁵National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

⁶Department of Theoretical Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

⁷Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland Simone.lisi@unige.ch

Transport experiments in twisted bilayer graphene revealed multiple superconducting domes separated by correlated insulating states [1]. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as it was predicted by band structure calculations [2].

Here, we combine different imaging techniques and angle resolved photoemission with simultaneous real and momentum space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with homogeneous twist angle that support a flat band with spectral weight that is highly localized in momentum space [3]. The flat band is separated from the dispersive Dirac bands which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure that were thus far deduced from transport measurements and theory.

References

[1] Y. Cao, et al., Nature, 43 (2018) 556; Y. Cao, et al., Nature, 80 (2018) 556

- [2] R. Bistritzer and A.H. MacDonald, Proc. Natl. Acad. Sci, 108(2011) 12233
- [3] S. Lisi et al., in preparation

Figures

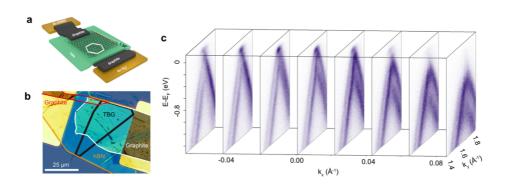


Figure 1: a) device schematic. b) Heterostructure optical micrograph. c) ARPES energy-momentum cuts for TBG.