Direct Writing of Lateral Fluorographene Nanopatterns with Tunable Bandgaps and Its Application in New Generation of Moiré Superlattice

Hu Li¹, Tianbo Duan¹, Soumyajyoti Haldar^{2,3}, Biplab Sanyal², Olle Eriksson², S. Hassan M. Jafri¹, Samar Hajjar-Garreau⁴, Laurent Simon⁴, and Klaus Leifer^{1*}

¹ Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden.

² Department of Physics and Astronomy, Uppsala University, 75121 Uppsala, Sweden.

³ Institute of Theoretical Physics and Astrophysics, University of Kiel, D-24098 Kiel, Germany.

⁴ IS2M, CNRS-UMR 7361, Université de Haute Alsace, 68093 Mulhouse, France.

Klaus.Leifer@angstrom.uu.se

Abstract

One of the primary goals for monolayer device fabrications and an ideal model of graphene as an atomic thin "canvas" is one that permits semiconducting/insulating lateral nanopatterns to be freely and directly drawn on the semi-metallic graphene surface [1-2]. Here, we demonstrates a reversible electron-beam-activated technique that allows direct writing of semiconducting/insulating fluorographene lateral nanopatterns with tunable bandgaps directly on the graphene surface with a resolution down to 9–15 nm [3-4]. This approach overcomes the conventional limit of semiconducting C_4F in the single-sided fluorination of supported graphene and achieves the tunability until insulating C_2F . Moreover, applying this technique on bilayer graphene demonstrates, for the first time, a new type of rectangular moiré pattern arising from the generated C_2F boat/graphene superlattice. This novel technique constitutes a new approach to fabricating graphene-based flexible and transparent electronic nanodevices with the C_xF channels utilized as semiconducting or insulating counterparts, and also opens a route toward the tailoring and engineering of electronic properties of such materials in addition to the dominating triangular moiré patterns from a graphene/hBN system.

References

[1] S.M. Hollen, etc., Science, 352, (2016) 415.

[2] S. Park, etc., Nature Nanotechnology, 4, (2009) 217.

[3] H. Li, etc., Applied Physics Reviews. 7 (2020) 011403.

[4] H. Li, etc., Scientific Reports. 6 (2016) 19719.

Figures

Figure 1: (a) AFM conductive mapping of nanopatterns consisting of graphene, semiconducting C_4F and insulating C_2F stripes directly written on monolayer graphene. The contrast of the mapping indicates the decreasing of the conductivity with the increased fluorine concentration. (b) Schematic of the formation of the rectangular moiré patterns for C_2F (boat)/graphene superlattice with a zero misalignment angle and exaggerated lattice mismatches. (c) Experimental AFM image of rectangular moiré patterns arising from the C_2F (boat)/graphene superlattice with the length and width of 13.8 nm and 6.8 nm, respectively.

Graphene2020