2D materials: transfer for microelectronic devices

L. Le Van-Jodin
J. David-Viffiantzefz, C. Ligaud, M. Kumar, B. Hyot, A. Sahoo, B. Reig, G. Molas, R. Gassilloud, S. Cadot, T. Alava
CEA-Leti, Université Grenoble Alpes, F-38000 Grenoble, France
lucie.levan-jodin@cea.fr

2D materials present a large range of electrical properties from insulator to conductor but also semiconductor or semi-metal moreover, their flexible, transparency and small dimension make them attractive for new electronic devices [1]. However, transfer of 2D materials for electronic devices is a challenge at several levels:
- Transfer on heterogeneous substrates composed with metal, SiO₂, SiN...
- Transfer on substrates with topography: electrodes, cavities...
- Cleaning of interfaces
- CMOS-compatible process (contamination, clean room...)
- Integration in devices: deposition on top layers, patterning...
- Large scale transfer

In our work, we study the transfer of 2D materials for microelectronics devices. We develop several large-scale transfer methods compatible with clean room. We also work on the transfer on electrodes with a high topography (>100 nm) and on the patterning, cleaning of interfaces and integration. Most of results have been obtain with MoS₂ and graphene but we also studied the transfer of other 2D materials.

References


Figures

Figure 1: MoS₂ on devices (left), Raman spectra of graphene before and after transfer