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Graphene and other 2D materials are very appealing for nanoelectronics, since they
could play crucial roles in future nanodevices.  At the nanoscopic scale, geometrical
effects can critically affect electronic, magnetic, and transport properties. For example,
zigzag-edged graphene nanoribbons (ZGNRs) can display spin-polarized  edge states,
which have very promising applications in future spintronics[1,2]. However, disorder in
the lattice structure, derived from either defects or external impurities, is extremely
difficult to completely eliminate, and can lead to substantial changes in the properties
of these systems. Therefore, characterising the effects of realistic disorders on device
behaviour remains crucially important.
Theoretical predictions of large-scale disordered systems can be  costly,  considering
the  computational resources required to deal with increases with system size. Machine
learning  techniques  have  been  employed  in  various  fields,  such  as  consumer
recommendation systems, aeronautics and chemistry[3], to exploit patterns in data and
make predictions. In this work, we employ machine learning techniques to estimate the
properties  of  two  particular  disordered  graphene  systems,  and  compare  their
performance against conventional techniques. 
Following [4], we first consider electronic transport through a disordered nanoribbon,
and show that both kernel ridge regression and neural network techniques can be used
to  accurately  estimate  transmission  profiles.  Secondly,  we  demonstrate  that  the
magnetic moments of finite graphene flakes, usually calculated using a time-consuming
self-consistent procedure, can be predicted using neural  networks.  In both cases,  a
careful choice of descriptor greatly improves the performance of the machine learning
techniques. Our results highlight the ability of machine learning techniques to capture
the complexity of disordered nanostructures,  and suggest that they can be used to
complement conventional techniques to better understand a wider array of systems.
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Figures

Figure 1: (Left): Actual (purple curve) vs. predicted (blue curve) transmissions for a random 
disordered ZGNR configuration represented in the upper-left inset with sublattice polarised (red/
blue points) impurities. The grey background corresponds to the extremal values of randomly-
generated configurations to train the ML model. The lower-right inset refers to the predicted vs. 
measured transmission for a particular energy. 
(Right): Magnetic moment profile of a randomly-generated graphene flake computed with a 
neural-network.


