Solution Growth and Properties of Monoisotopic Hexagonal Boron Nitride Single Crystals

Jame H. Edgar

J. Li and E. Janzen Kansas State University, Tim Taylor Department of Chemical Engineering, Manhattan, KS 66506, U.S.A. edgarjh@ksu.edu

High quality hexagonal boron nitride (hBN) crystals with a single boron isotope (ie monoisotopic) were produced at atmospheric pressure using a molten metal flux [1]. Metal solvents successfully tested for hBN crystal growth included nickel plus chromium, and iron plus chromium [2]. Crystal growth was achieved by dissolving the boron and nitrogen (from N₂, naturally 99.6% ¹⁴N) source materials in the solvent at 1550 °C, then slowly cooling (<4 °C/h) to reduce the solubility, causing hBN to precipitate. The typical size of these randomly nucleated hBN crystals is on the order of 500µm to 2 mm across, and tens of microns thick, Figure 1. In this study, pure boron powders that were a single isotope (>99% isotopic purity) were employed as the boron sources. This is in contrast to natural boron, which consists of two stable isotopes, ¹⁰B (79.9 at%) and ¹¹B (20.1 at%). With only one isotope, isotopic disorder, the random distribution of boron isotopes, is eliminated, leading to a change in the hBN's properties. Most dramatically, phonon lifetime is increased. Consequently, the 300 K in-plane thermal conductivity is increased from 408 W·m⁻¹·K⁻¹ for h^{nat}BN to 585 W·m⁻¹·K⁻¹ for h¹⁰BN [3]. The reduced infrared optical losses in monoisotopic hBN is advantageous for nanophotonic devices based on hyperbolic phonon polaritons. Its use leads to stronger light-matter interactions and nonlinear effects. The challenges to growing larger hBN crystals will also be addressed.

References

- [1] S. Liu, R. He, L. Xue, J. Li, B. Liu, and J.H. Edgar, Chem. Mater. 30 (2018) 6222.
- [2] S. Liu, R.He, Z. Ye, X. Du, J.Y. Lin, H.X. Jiang, B. Liu, and J.H. Edgar, Crystal Growth & Design 17 (2017) 4932.
- [3] C. Yuan, J. Li, S. Liu, J.H. Edgar, L. Lindsay, D. Cherns, J.W. Pomeroy, and M. Kuball, Communications Physics 2 43 (2019) 43.
- [4] I.-H. Lee, M. He, X. Zhang, Y. Luo, S. Liu, J.H. Edgar, K. Wang, P. Avouris, T. Low, J.D. Caldwell, and S.-H. Oh, submitted to Nature Communications (2020).

Figures

Figure 1: Optical photograph of B-10 enriched hBN crystal flakes.