Decoupling Molybdenum Disulfide from its Substrate by Cesium Intercalation

Johann Coraux

Roberto Sant^{1,2}, Simone Lisi¹, Van Dung Nguyen¹, Estelle Mazaleyrat^{1,3}, Ana Cristina Gómez Herrero¹, Olivier Geaymond¹, Valérie Guisset¹, Philippe David¹, Alain Marty⁴, Matthieu Jamet⁴, Claude Chapelier³, Laurence Magaud¹, Yannick J. Dappe⁵, Marco Bianchi⁶, Philip Hofmann⁶, Gilles Renaud² ¹Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France ²Univ. Grenoble Alpes, CEA, IRIG/DEPHY/MEM, 38000 Grenoble, France ³Univ. Grenoble Alpes, CEA, IRIG/DEPHY/PHELIQS, 38000 Grenoble, France ⁴Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG/DEPHY/SpinTec, 38000 Grenoble, France ⁵SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France ⁶Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark johann.coraux@neel.cnrs.fr

Abstract

Intercalation of alkali atoms within the lamellar transition metal dichalcogenides is a possible route toward a new generation of batteries. It is also a way to induce phase transitions of interest for optical and electrical switches. The process of intercalation has been mostly studied in three-dimensional dichalcogenide films [1].

We will focus on single-layer of molybdenum disulfide (MoS₂), deposited on a gold substrate, intercalated with cesium (Cs) atoms in ultra-clean conditions (ultrahigh vacuum), in the form of a AuCs alloy [2]. Our work combines scanning tunneling microscopy, synchrotron X-ray diffraction, photoemission spectroscopy, and density functional theory calculations.

Intercalation is found to decouple MoS_2 from its substrate, increasing the spacing distance by fractions of a nanometer, and suppressing the modulations of its electronic properties that are associated with the $MoS_2/Au(111)$ moiré pattern. Electron transfer occurs from Cs to MoS_2 , the energy of the valence band maxima change, and electronic disorder is induced by structural disorder in the intercalated Cs layer. Besides, an abnormal lattice expansion of MoS_2 is found. Intercalation is thermally activated, and so is the reverse process of de-intercalation. Our work gives microscopic understanding on a process of relevance in several possible future technologies, and shows the way to the manipulation of the properties of two-dimensional dichalcogenides by "under-cover" functionalization.

References

[1] R. Friend & A. Yoffe, Adv. Phys. 36 (1987) 1

[2] R. Sant et al., under review.

Figures

Figure 1: Cartoon illustrating the intercalation process between a single layer MoS_2 and its growth substrate, Au(111) (top). Scanning tunneling topography of single-layer MoS_2 islands, one intercalated with Cs and the other not (bottom).