Synthesis of Large-Area and Highly Crystalline InS Atomic Layers on Insulating Substrates

Chang-Hsiao Chen1,*
Chien-Liang Tu1, Kuang-I Lin2, Jiang Pu3, Tsai-Fu Chung4, Chien-Nan Hsiao5, An-Ci Huang1, Jer-Ren Yang4, Taishi Takenobu3
1Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
2Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan
3Department of Applied Physics, Nagoya University, Nagoya, Japan
4Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
5Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
chchen@mail.ee.nsysu.edu.tw

Abstract

Group-III monochalcogenides of two-dimensional (2D) layered materials have attracted widespread attention among scientists due to their unique electronic performance and interesting chemical and physical properties.[1] However, studies on the synthesis of highly crystalline, large-area, and atomically thin-film Indium sulfide (InS) have not been reported thus far. Here, we reported the chemical vapor deposition (CVD) synthesis method of atomic InS crystals on the insulating substrates.[2] The direct chemical vapour phase reaction of metal oxides with chalcogen precursors to produce a large-sized hexagonal crystal structure and atomic-thickness InS flakes or films on the mica. The ion-gel gated InS field-effect transistors (FETs) reveal n-type transport behavior, and have an on-off current ratio of > 10^3 and a room-temperature electron mobility of ~ 2 cm^2/Vs. Moreover, our CVD InS can be transferred from mica to any substrates, so various 2D materials can be reassembled into vertically stacked heterostructures.

References


Figures

Figure 1: (a) Schematic diagram of the experimental setup for CVD synthesis of InS atomic layers, (b) OM image of trilayer InS grown on certain of those bilayer tops. Scale bar, 10 μm.