WS₂ quantum dot/Si heterojunction based self-biased photodetector with plasmon mediated suppressed dark current and fast photoresponse

Abhilasha Bora

Larionette P. L. Mawlong, P. K. Giri Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India boraabhilasha@gmail.com

Van der Waals heterostructure based photodetectors built from transitional metal dichalcogenides on a conventional semiconductor are drawing much attention due to their superior spectral responsivity, high photocurrent to dark current ratio and ultrafast response time. Herein, we fabricate a heterojunction photodetector by combining a p-type Si substrate with n-type WS_2 quantum dots synthesized by liquid phase exfoliation. The WS_2 QD/Si heterojunction photodetector has a response time of \sim 55 µs and an I_{on}/I_{off} ratio of \sim 200. The fabricated photodetector can also operate at zero bias owing to the separation of photogenerated charge carriers by the built-in electric field. Next, we integrate plasmonic Au nanoparticles into the WS₂ QD/Si heterojunction, which greatly elevates the photodetector capabilities. The WS₂/Au/Si heterojunction device exhibits a very high lon/loff ratio $\sim 10^5$, which is 3 order of magnitude higher than that of bare WS₂ QD/Si photodetector. Additionally, the WS₂/Au/Si detector shows a faster response speed of \sim 4.4 µs (Figure 2). The peak responsivity and detectivity of the fabricated WS₂/Au/Si detector are estimated to be ~1.23 A/W and ~ 2.9 \times 10¹¹ Jones, respectively at an applied bias of -5 V. These results indicate that integrating plasmonic nanoparticles with the WS₂ QD/Si photodetector holds great potential for application in future high performance photodetectors.

Figures

Figure 1: I–V characteristics of the photodetector in the dark and at illumination wavelength 405 nm (20 mW/cm²) at room temperature under a wide range of bias voltages.

Figure 2: Rising and falling edges for the estimation of rise and fall times at 20 kHz.

Graphene2020