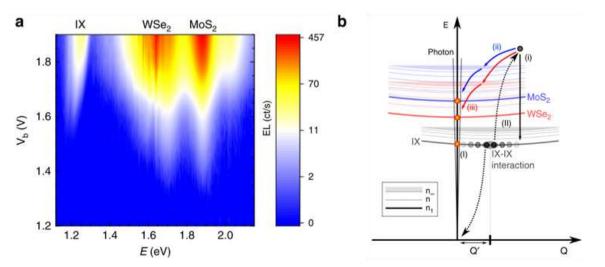
Upconverted electroluminescence in van der Waals heterostructures

J. Binder^{1,2}

- J. Howarth^{3,4}, F. Withers⁵, M.R. Molas^{1,2}, T. Taniguchi⁶, K. Watanabe⁶, C. Faugeras¹, A. Wysmolek², M. Danovich^{3,4}, V.I. Fal'ko^{3,4,7}, A.K. Geim^{3,4}, K.S. Novoselov^{3,4}, M. Potemski^{1,2}, A. Kozikov^{3,4}
- ¹ Laboratoire National des Champs Magnetiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 Rue des Martyrs, 38042 Grenoble, France
- ² Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- ³ School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- ⁴ National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- ⁵ Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
- ⁶ National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- ⁷ Henry Royce Institute for Advanced Materials, M13 9PL, Manchester, UK johannes.binder@fuw.edu.pl


In this work we present optoelectronic measurements of electrically-driven light emitting vdW heterostructures based on MoS₂ and WSe₂. These structures allowed us to unveil the electroluminescence signal of K-K MoS₂/WSe₂ interlayer excitons (IX), for which the electron is located in MoS₂ and the hole in WSe₂. Surprisingly, an emission at energies of around 1.9 eV can be observed at bias voltages as low as 1.3 V (Fig.1a). Normally, one would expect that the applied voltage roughly corresponds to the energy of the emitted photons. The difference of about 0.6 eV constitutes hence a remarkable energetic upconversion. This effect was explained with an excitonic Auger effect (Fig.1b). In this picture one interlayer exciton (which is indirect in real and momentum space) recombines non-radiatively and transfers the energy and momentum to another interlayer exciton that can then give rise to the characteristic observed intralayer emission of MoS₂ and WSe₂ [1].

The findings of this work are of crucial importance for future light emitting device engineering as well as for attempts towards the observation of fundamental phenomena like superfluidity or Bose-Einstein condensation of interlayer excitons in van der Waals heterostructures.

References

[1] J. Binder et al., Nature Communications, 10:2335 (2019)

Figures

Figure 1: (a) False colour plot of the EL spectra as a function of bias voltage. (b) Mechanism of upconverted emission [1].