Liquid-phase exfoliated GeSe nanoflakes for photoelectrochemicaltype photodetectors and photoelectrochemical water splitting

Gabriele Bianca^{1,2}

Marilena Isabella Zappia,^{3,4} Sebastiano Bellani,¹ Michele Serri,¹ Leyla Najafi,¹ Reinier Oropesa-Nuñez ³, Beatriz Martín-García,¹ Daniel Bouša,⁵ David Sedmidubský,⁵ Vittorio Pellegrini,^{1,3} Zdeněk Sofer,⁵ Anna Cupolillo⁴ and Francesco Bonaccorso^{1,3}

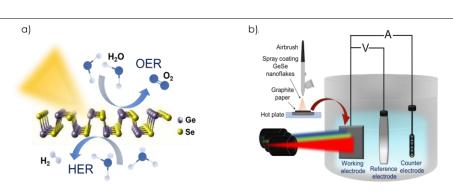
¹ Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy

- ² Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
- ³ BeDimensional Spa., via Albisola 121, 16163 Genova, Italy

⁴ Department of Physics, University of Calabria, Via P. Bucci cubo 31/C 87036, Rende (CS), Italy

⁵ Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5,

166 28 Prague 6, Czech Republic


gabriele.bianca@iit.it

The conversion of electromagnetic radiation into chemical fuels and electricity through photoelectrochemical (PEC) cells represents a powerful strategy for sustainable fuel and chemical generation,[1] as well as innovative self-powered photodetectors.[2] In this context, two-dimensional (2D) materials are attracting huge interest as potential advanced photo(electro)catalysts.[3] Recently, low-cost and environmentally friendly 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts.[4] Among them, layered germanium selenide (GeSe), is a promising material candidate for optoelectronic devices due to its tuneable electronic structure, strong visiblelight absorbance, photoresponse and environmental stability.[4] Here, we report the first experimental study of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H₂SO₄ (pH 0.3), 1 M KCI (pH 6.5), 1 M KOH (pH 14). The PEC properties of the GeSe nanoflakes, produced by liquid-phase exfoliation approach[5] in non-toxic solvents (e.g., 2-propanol) and deposited by spray-coating technique, [5] are used to conceive PEC-type photodetectors, reaching responsivity up to 0.32 AW⁻¹ under 455 nm. Finally, we demonstrate the use of GeSe-based photoelectrodes as photoanodes or photocathodes for water splitting reactions under simulated sunlight, inspiring the use of 2D GeSe in innovative PEC systems.

References

- [1] S. Bellani, M.R. Antognazza, F. Bonaccorso, Adv.Mater., 9, 31 (2019), 1801446.
- [2] J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, Nanoscale, 8 (2016), 50–73.
- [3] M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nuñez, B. Martín-García, D. Bouša, D. Sedmidubský, V. Pellegrini, Z. Sofer, A. Cupolillo, F. Bonaccorso, Adv. Funct. Mater., (2020), 1909572.
- [4] C. Chowdhury, S. Karmakar, and A. Datta, J. Phys. Chem. C, 121, 14 (2017), 7615-7624.
- [5] F. Bonaccorso, A. Bartolotta, J. N. Coleman, C. Backes, Adv. Mater., 29, 28 (2016), 6136-6166

Figure

Figure 1: a) Schematic processes of photoelectrochemical water splitting on GeSe nanoflakes; b) Illustration of the experimental setup for photoelectrochemical characterization of the GeSe photoelectrodes, produced by spray coating deposition of the GeSe nanoflakes dispersion.

Graphene2020