CVD growth of unique vertical MoS₂ flakes and monolayer pyramid MoS₂ flakes and their application to develop high-sensitive and room temperature gas senors

Abhay V. Agrawal Mukesh Kumar Indian Institute of Technology, Ropar, India @ mkumar@iitrpr.ac.in

Abstract

Here, we developed H₂ and NO₂ gas sensor by modifying the growth of MoS₂ flakes from inplane to vertical aligned MoS₂ flakes and monolayer pyramid MoS₂ flakes. Highly uniform vertical aligned MoS₂ flakes, mixed MoS₂ flakes and monolayer pyramid MoS₂ flakes were utilized for developing fast and highly recover H₂ and NO₂ gas sensing. These unique growth structures synthesized by modified chemical vapor deposition technique. Detailed characterizations were carried out to reveal the growth of MoS₂ flakes. It has been found that in-plane MoS₂ work as seed layer for initial growth of vertical MoS₂ and leads to growth of an interconnected vertical MoS₂ flakes with increased gas flow rate. The gas flow rate plays a vital role for the morphology variation of MoS₂ flakes.

Here, highly uniform electrically connected vertical aligned MoS₂ flakes and monolayer pyramid flakes based H₂ sensor operating at room temperature developed. The 1 % H₂ gas concentration studied in the temperature range of 28-150 °C, well below the explosion limit of 4 % H₂ gas concentration. The lowest response time 14 s (11.3 s) and fast recovery 108 s (125.3 s) for vertical aligned MoS₂ flakes (pyramid MoS₂ flakes) was observed. The sensitivity 1 % and 6 % was found for vertical aligned MoS₂ flakes and pyramid MoS₂ flakes at RT, respectively. The role of MoS₂ edges verified by depositing thin ZnO layer (2-3 nm) on vertical MoS₂. We found a decrease in relative response of MoS₂-ZnO hybrid structures. The photoactivated NO₂ sensor developed by mixed in-plane and vertical p-MoS₂ flakes (mixed MoS₂). The sensor showed fast response with sensitivity of ~10.36 % for 10 ppm of NO₂ at RT without complete recovery. The UV assisted NO₂ sensing showed an improved performance in term of fast response and complete recovery kinetics with enhanced sensitivity to 10 ppm NO₂ concentration. The detailed gas sensing mechanism is proposed in the light of detail surface morphology and density function theory (DFT). This study reveals that tailoring the favourable adsorption sites in 2D materials is helpful to develop the highly sensitive and fast gas sensor for next generation safety devices.

References:

- Agrawal, A. V.; Kumar, N.; Venkatesan, S.; Zakhidov, A.; Manspeaker, C.; Zhu, Z.; Robles Hernandez, F.; Bao, J.; Kumar, M., ACS Applied Nano Materials, 1 (2018), 2356-2367.
- [2] Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, J.; Kumar, M.; Kumar, M., Applied Physics Letters, 111 (2017), 093102.
- [3] Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Yang, G.; Bao, J.; Kumar, M.; Kumar, M., ACS Sensors 2018, (2018), 998-1004.
- [4] R. Kumar; N. Goel; Abhay V. Agrawal; R. Raliya; S Rajamani; G Gupta; P. Biswas; M Kumar; M Kumar; IEEE Sensors Journal, 2019. 19(22): p. 10214-10220.
- [5] Abhay. V. Agrawal; R. Kumar; Guang Yang; Jiming Bao; M Kumar; M Kumar, (Under revision in Int. J Hydrogen Energy)
- [6] Yue, Q.; Shao, Z.; Chang, S.; Li, J., Nanoscale Research Letters, 8 (2013), 425.

Figures

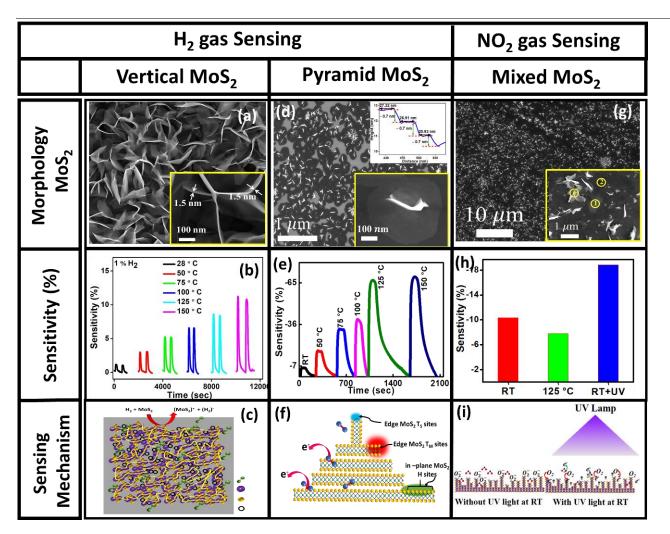


Figure: (a-c) Vertical MoS₂ flakes based H₂ gas sensor. (d-f) Pyramid MoS₂ flakes based H₂ gas sensor. (g-i) Mixed MoS₂ flakes (combination of in-plane MoS₂ and vertical MoS₂ flakes) based NO₂ gas sensor.