The role of the spin-orbit coupling in the Transition metal dichalcogenides vertical spin valves

Xinhe Wang
Xiaoyang Lin, Yuan Cao, Weisheng Zhao
The School of Microelectronics, Beihang University, Beijing, China

Xinhe@buaa.edu.cn

Abstract
As a family of two-dimensional (2D) layered materials, Transition metal dichalcogenides (TMDCs) MX2 (M=Mo,W; X=S,Se) have been demonstrated to have potential for applications in the field of spintronics1,2 because of their strong spin-orbit coupling, spin-splitting with broken inversion symmetry3 and spin-valley degrees of freedom4,5. In our work6, the 2D MX2 were grown using chemical vapor deposition, and vertical spin valves with cross-strip geometry were constructed. the spin valve effects are measured, with layer and stacking variations. Which show the signature of the spin-valley coupling and spin-orbit torques. they pave the way for magnetic and electric control of spin and valley-polarized transport in magnetic tunneling junctions. Then, metallic behavior of the junction barrier is discussed; the temperature (50K-300K) dependence of the magnetoresistance ratio is reported; the role of the anisotropic magnetoresistance in the typical cross-strip geometry and the annealing effect on the device is discussed. Finally, the feature of the vertical spin valves based on the different TMDCs are listed and compared.

References