Tunability of optical absorption of MoS₂ by electrical gating and its application in a hybrid modulator

Tongcheng Yu

Vasyl G. Kravets, Fan Wu, Gregory H. Auton, Shinji Imaizumi, Alexander N. Grigorenko

School of Physics and Astronomy, the University of Manchester, M13 9PL, Manchester, UK

tongcheng.yu@postgrad.manchester.ac.uk

Abstract

It was recently established that optical constants of 2D monolayers, in contrast to many bulk semiconducting materials such as Si, Ge, GaAs, could vary significantly with electrical field^[1-2]. Here we investigated the electric field effect on optical properties of a monolayer of molybdenum disulphide (MoS₂). This field effect is utilised to achieve ~10% visible light modulation for a hybrid electro-optical resonant modulator based on MoS₂. A suggested hybrid nanostructure consists of a CMOS compatible Si₃N₄ dielectric layer sandwiched between a thin gold film and a MoS₂ monolayer which enables a selective enhancement of polarised electro-absorption in a narrow window of angles of incidence and a narrow wavelength range near MOS₂ exciton transition energies. The possibility to modulate visible light with 2D materials and the robust nature of light modulation by MoS₂ could be useful for creation of reliable ultra-compact electro-optical hybrid visiblelight modulators.

References

- Reed, G. T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J, Nat. Photon, 4(2017), 518-526.
- [2] Mak, K.; Shan, J., Nat. Photon, 10 (2016) 216-226.

Figure 2: Change in s-polarised reflectance in the Au/Si₃N₄/MoS₂ hybrid modulator for different gating voltages with an incident angle of 80 degree.