Synaptic Plasticity Selectively Activated by Polarization-Dependent Energy-Efficient Ion Migration in an Ultrathin Ferroelectric Tunnel Junction

Chansoo Yoon¹
Ji Hye Lee¹, Sangik Lee¹, Jihoon Jeon¹, Jun Tae Jang², Dae Hwan Kim², Young Heon Kim³ and Bae Ho Park¹,*
¹Department of Physics, Konkuk University, Seoul 143-701, Korea
²School of Electrical Engineering, Kookmin University, Seoul 136-702, Korea
³Korea Research Institute of Standards and Science, Daejeon 305-304, Korea

JI30124@gmail.com

Abstract

Selectively activated inorganic synaptic devices, showing a high on/off ratio, ultrasmall dimensions, low power consumption, and short programming time, are required to emulate the functions of high-capacity and energy-efficient reconfigurable human neural systems combining information storage and processing. Here, we demonstrate that such a synaptic device is realized using a Ag/PbZr₀.₅₂Ti₀.₄₈O₃ (PZT)/La₀.₈Sr₀.₂MnO₃ (LSMO) ferroelectric tunnel junction (FTJ) with ultrathin PZT (thickness of ~4 nm). Ag ion migration through the very thin FTJ enables a large on/off ratio (10⁷) and low energy consumption (potentiation energy consumption = ~22 aJ and depression energy consumption = ~2.5 pJ). In addition, the simple alignment of the downward polarization in PZT selectively activates the synaptic plasticity of the FTJ and the transition from short-term plasticity to long-term potentiation.

Figure 1: Resistive switching behaviour.