Synaptic Plasticity Selectively Activated by Polarization-Dependent Energy-Efficient Ion Migration in an Ultrathin Ferroelectric Tunnel Junction

Chansoo Yoon¹

Ji Hye Lee¹, Sangik Lee¹, Jihoon Jeon¹, Jun Tae Jang², Dae Hwan Kim², Young Heon Kim³ and Bae Ho Park^{1,*} ¹Department of Physics, Konkuk University,

Seoul143-701, Korea

²School of Electrical Engineering, Kookmin

University, Seoul 136-702, Korea

³Korea Research Institute of Standards and

Science, Daejeon 305-304, Korea

JI30124@gmail.com

Abstract

Selectively activated inorganic synaptic devices, showing a high on/off ratio, ultrasmall dimensions, low power consumption, and short programming time, are required to emulate the functions of high-capacity and energy-efficient reconfigurable human neural systems combining information storage and processing.

Here, we demonstrate that such a synaptic device is realized using a Ag/PbZr_{0.52}Ti_{0.48}O₃ (PZT)/La_{0.8}Sr_{0.2}MnO₃ (LSMO) ferroelectric tunnel junction (FTJ) with ultrathin PZT

(thickness of ~4 nm). Ag ion migration through the very thin FTJ enables a large on/off ratio (107) and low energy consumption (potentiation energy consumption = ~22 aJ and depression

```
energy consumption = ~2.5 pJ). In addition,
the simple alignment of the downward
polarization in PZT selectively activates the
synaptic plasticity of the FTJ and the
transition from short-term plasticity to long-
term potentiation.
```


