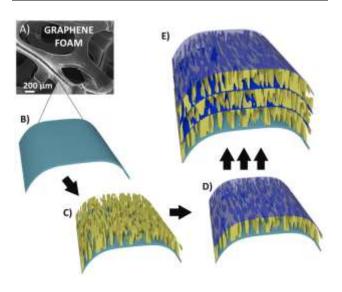
A robust, modular approach to produce graphene-MO_x multilayer foams as electrodes for Li-ion batteries

Zhen Yuan Xia ^{a,b}

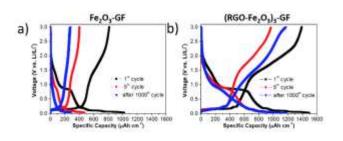
Meganne Christian ^c, Catia Arbizzani ^d, Vittorio Morandi ^c, Massimo Gazzano ^a, Vanesa Quintano ^a, Alessandro Kovtun ^a Vincenzo Palermo ^{a,b*}

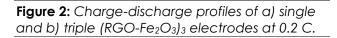
^aChalmers University of Technology, Göteborg, Sweden. ^bCNR-ISOF, Bologna, Italy. ^cCNR-IMM, Bologna, Italy. ^dUniversity of Bologna, Bologna, Italy.

zhenyuan@chalmers.se


Major breakthroughs in batteries would require development of new composite electrode materials, with a precisely controlled nanoscale architecture. Though, composites used for energy storage are typically a disordered bulk mixture of different materials, or simple coatings of one material onto another. We demonstrate here a new technique to create complex hierarchical electrodes made of multilayers of vertically aligned nanowalls of hematite (Fe₂O₃) alternated to horizontal spacers of reduced graphene oxide (RGO), all deposited on a 3D, conductive graphene foam. The RGO nanosheets act as porous spacers, current collectors and protection against delamination of the hematite. The multilayer composite, formed by up to 7 different layers, can be used with no further processing as an anode in Li-ion batteries, with a specific capacity up to 1175 μ Ah cm⁻² and a capacity retention of 84 % after 1000 cycles. Our coating strategy gives improved cyclability and rate capacity compared to conventional bulk materials. Our production method is ideally suited to assemble

an arbitrary number of organic-inorganic materials in an arbitrary number of layers.


References


- [1] Xia, Z. et al., Nanoscale, accepted (2019)
- [2] Xia, Z.Y. et al., Carbon, 84 (2015) 254
- [3] Xia, Z.Y. et al., ChemPlusChem, 3 (2014) 439
- [4] Xia, Z.Y. et al., Advanced Functional Materials, 37 (2013) 4684

Figures

Figure 1: Schematic illustration of the production of multilayer RGO-Fe₂O₃ graphitic foam architectures.

