One-step synthesis of amino-functionalized carbon nanoparticles and their incorporation in graphite oxide

Eleni Thomou^{1,2}

M. Samouhos³, A. Enotiadis⁴, M. Patila⁵, K.-M. Lyra², K. Spyrou⁴, D. Gournis² and P.Rudolf¹

1 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands

2 Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece

3 School of Mining and Metallurgical Engineering, National Technical University of Athens, Greece

4 National Center for Scientific Research "Demokritos", 15341 Ag. Paraskevi Attikis, Athens, Greece

5 Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina 45110, Greece

e.thomou@rug.nl

Abstract

Amine-rich carbon nanoparticles $(NH_2-$ CNPs) are synthesized by one-step hydrothermal reaction [1] using the polyethylenimine (PEI) polymer as the only component. The synthesized NH₂-CNPs, with a size ranging between 10 and 20 nm, are composed of a continual external shell and a denser carbon-based core, and they exhibit a strong photoluminescence under UV light at 365 nm. The amine-rich CNPs are homogeneously incorporated easily in graphite oxide (GO) sheets [2-4] creating a novel hybrid carbon superstructure. The structure of the final nanocomposite and the physicochemical properties are studied using a number of analytical techniques (FT-IR, PL, XRD, Raman, XPS, TEM). The developed material is promising a candidate for solid state lightning, light detection, as well as for pharmaceutical and environmental applications.

References

- Li, X., Liu, Y., Song, X., Wang, H., Gu, H. and Zeng, H., Angew. Chem. Int. Ed., 54 (2015) 1759-1764
- Gengler, R. Y. N., Veligura, A., Enotiadis, A., Diamanti, E. K., Gournis, D., Jozsa, C., van Wees, B. J. and Rudolf, P., Small 6 (2010) 35-39
- [3] Stergiou D.V., Diamanti E.K., Gournis D., Prodromidis M.I., Electrochem. Commun. 12 (2010) 1307-1309
- [4] Staudenmaier L., Ber. deut. Chem. Ges. 31 (1898) 1481

Figures

Figure 1: Photoluminescence of NH₂-CNPs under UV light (365 nm)

Figure 2: TEM images of the NH₂-CNPs-GO material