One-step synthesis of amino-functionalized carbon nanoparticles and their incorporation in graphite oxide

Eleni Thomou1,2
M. Samouhos3, A. Enotiadis4, M. Patila5, K.-M. Lyra2, K. Spyrou4, D. Gournis2 and P. Rudolf1

1 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
2 Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
3 School of Mining and Metallurgical Engineering, National Technical University of Athens, Greece
4 National Center for Scientific Research “Demokritos“, 15341 Ag. Paraskevi Attikis, Athens, Greece
5 Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina 45110, Greece

e.thomou@rug.nl

Abstract

Amine-rich carbon nanoparticles (NH2-CNPs) are synthesized by one-step hydrothermal reaction [1] using the polyethylenimine (PEI) polymer as the only component. The synthesized NH2-CNPs, with a size ranging between 10 and 20 nm, are composed of a continual external shell and a denser carbon-based core, and they exhibit a strong photoluminescence under UV light at 365 nm. The amine-rich CNPs are easily homogeneously incorporated in graphite oxide (GO) sheets [2-4] creating a novel hybrid carbon superstructure. The structure of the final nanocomposite and the physicochemical properties are studied using a number of analytical techniques (FT-IR, PL, XRD, Raman, XPS, TEM). The developed material is a promising candidate for solid state lightning, light detection, as well as for pharmaceutical and environmental applications.

References


Figures

Figure 1: Photoluminescence of NH2-CNPs under UV light (365 nm)

Figure 2: TEM images of the NH2-CNPs-GO material