Controlling photoluminescence of Molybdenum disulfide (MoS\textsubscript{2}) by molecular doping

Ali Syari’ati, Oreste de Luca, Petra Rudolf
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4 9747 AG, Groningen, The Netherlands
a.syariati@rug.nl

Atomically thin Molybdenum disulfide has been studied extensively because when the thickness of MoS\textsubscript{2} is reduced to a single layer, the latter no longer exhibits the indirect band gap typical of the bulk, but a 1.8 eV direct band gap and gives rise to strong photoluminescence even at room temperature.1 Chemical vapour deposition (CVD) has been the most effective method to obtain large domains of single layer MoS\textsubscript{2}.2 However, during the growth process sulfur vacancies are formed and influence the electronic properties.3 In this work we studied the photoluminescence (PL) of single layer MoS\textsubscript{2} upon functionalization with thiol-terminated molecules. We demonstrate that the PL intensity increases when p-type doping chemisorbed on single layer MoS\textsubscript{2}, while the PL intensity is reduced upon functionalization with an n-type dopant. This PL intensity variation is due to the switching between exciton and trion recombination PL, which depends on the carrier density in the single layer MoS\textsubscript{2}.4 We confirmed the chemical environment of MoS\textsubscript{2} before and after functionalization using X-ray photoemission spectroscopy (XPS), while Raman spectroscopy was employed to monitor the functionalization via the vibrational modes of MoS\textsubscript{2}. Since the dopant molecules are covalently bonded, the PL intensity is not affected by solvent exposure. This straightforward and effective approach of controlling the PL by molecular doping enables a robust MoS\textsubscript{2} system, which is essential for optoelectronic applications.

References

Figures

Figure 1: Schematic illustration of surface charge transfer between MoS\textsubscript{2} and dopant molecules