Two-Dimensional Quartic Dispersion Materials: Strong singularity, Magnetic Instability and Thermoelectric Efficiency

Hâldun Sevinçli, B. Özdamar, G. Özbal, M. N. Çınar, G. Kurt, B. Kaya

Izmir institute of Technology, Department of Materials Science and Engineering, 35430 Urla, Izmir, Turkey

haldunsevincli@iyte.edu.tr

The critical points and the corresponding singularities in the density of states of crystals were first classified by Van Hove with respect to their dimensionality and energy-momentum dispersions. Different from saddle-point Van Hove singularities, the occurrence of a continuum of critical points, which give rise to strong singularities in two-dimensional elemental hexagonal lattices, is shown using a minimal tightbinding formalism. The model predicts auartic energy-momentum dispersions despite quadratic or linear ones, which is also the origin of the strong singularity. Using density functional theory calculations, families of such two-dimensional materials are identified. The first family consists of hexagonal lattices of group-VA elements, namely nitrogene, phosphorene, arsenene, antimonene and bismuthine [1]. A new family of quartic dispersion materials include A₂B₂ type hexagonal crystals of groups IV (C, Si, Ge, Sn, Pb) and V (N, P, As, Sb. Bi) elements with P6m2 and P3m1 symmetries. The strucutures are shown to be dynamically stable and display "mexican hat" or purely quartic dispersions ($E \sim k^4$) at their valence bands. The extraordinary features of quartic dispersion materials are investigated. The strong singularity gives rise to ferromagnetic instability with an inversesquare-root temperature dependence and the quartic dispersion is responsible for a step-like transmission spectrum, which is a characteristic feature of one-dimensional systems. Because of the abrupt change in transmission at the band edge, these materials have temperature-independent

thermopower and enhanced thermoelectric efficiencies.

Figure 1: Linear, quadratic and quartic energy bands in one- and two dimensions with corresponding densities of states (DOS) and transmission spectra. Quartic dispersion gives rise to a strong singularity in the DOS and a steplike transmission behaviour in two-dimensions.

References

- [1] H. Sevinçli, Nano Letters, 17 (2017) 2589.
- [2] B. Ozdamar, G. Ozbal, M. N. Cinar, G. Kurt, B. Kaya, H. Sevinçli, Physical Review B, 98 (2018) 045431.