First-principles investigation of the mechanism of oxidation in atomic layered MoS₂ structures

Junga Ryou¹

Han Seul Kim², Juho Lee³, and Yong-Hoon Kim^{1,3}

¹ Graduate School of Energy, Environment, Water, and Sustainability, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea ² Center for Division of National Supercomputing Research and Development, Korea Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea ³ School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea

y.h.kim@kaist.ac.kr

Abstract

Two-dimensional transition metal dichalcogenides (TMDCs) has attracted a areat deal of attention due to its unique properties. For electronic and optoelectronic device applications of TMDCs, the oxidation mechanisms studies are important. Herein, we investigate the oxidation mechanisms of MOS_2 layer carrying out density functional theory (DFT) calculations. We analyze the atomic and electronic properties of oxidized MoS₂ layer structures. We find that the first step of the oxidation process occurs at the edge and top basal plane of MoS_2 . The MoS_2 nanocluster has a bending structure after fully oxidation of top basal plane. We suggest that the bending and opening of edges is the key step that allows the selflimiting layer-by-layer oxidation of multilayer MoS₂. The opened edge atomic structures of MoS₂ nanocluster make enough space to insert the oxygen atom at the interface of bilayer MoS₂. We will also consider the diffusion pathway of oxygen atoms into interface and calculate the stable structures of oxidation on the two sides of bilayer MoS₂. accumulated understanding The of oxidation mechanisms can be applied to achieve the refined control of TMDCs

oxidation processes, which will allow the synthesis of atomically precise MoS₂-MoO₃ heterostructures and the prevention of MoS₂ oxidation under ambient and oxidative conditions. Based on these result, we provides the basic understanding on the oxidation mechanism of TMDCs materials.

References

- J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, Adv. Mater. 24 (2012) 5408.
- [2] H. S. Sen, H. Sahin, F. M. Peeters, and E. Durgun, J. Appl. Phys. 116 (2014) 083508.
- [3] J. Yang, S. Kim, W. Choi, S. H. Park, Y. Jung, M.-H. Cho, and H. Kim, ACS. Appl. Mater. Inter. 5 (2013) 4739.
- [4] S. H. Song, B. H. Kim, D.-H. Choe, J. Kim, D. C. Kim, D. J. Lee, J. M. Kim, K. J. Chang, and S. Jeon, Adv. Mater. 27 (2015) 3152.

Figures

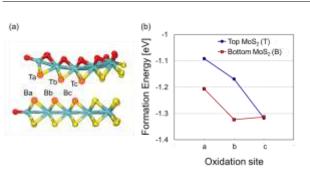


Figure 1: (a) An atomistic model of the oxidized zigzag MoS_2 nanoribbon (b) Oxidation energies of a, b, and c sites for T and B.