Segregated transport channels in sidewall nanoribbons

Stephen R. Power ^{1,2,3}

Johannes Aprojanz⁴, Pantelis Bampoulis^{5,6}, Stephan Roche^{1,7}, Antti-Pekka Jauho⁸, Harold Zandvliet⁶, Alexei Zakharov⁹ and Christoph Tegenkamp^{4,5}

¹ICN2, Bellaterra, Spain — ²UAB, Bellaterra, Spain — ³School of Physics, Trinity College Dublin, Ireland — ⁴Institut für Physik, Technische Universität Chemnitz — ⁵Institut für Festkörperphysik, Leibniz Universität Hannover — ⁶MESA+Institute, University of Twente, The Netherlands — ⁷ICREA, Barcelona, Spain — ⁸CNG and DTU Nanotech, Denmark — ⁹MAX IV Laboratory and Lund University, Sweden stephen.power@tcd.ie [2] J. Aprojanz, S.R. Power et al, Nature Communications 9 (2018)4426

Figures

Figure 1: Electrons in sidewall nanoribbons propagate ballistically, in three separated channels [2].

Abstract (

Conductance quantization is a defining feature of electronic transport in quasi-one dimensional conductors. In the absence of a magnetic field, confinement results in a sequence of transverse sub-bands with an increasing number of nodes across the device width.

Graphene nanoribbons grown on the sidewalls of silicon carbide (SiC) mesa structures have previously[1] been shown to present a 1D ballistic channel at the micron scale.

New 2-point measurements reveal additional quantised channels at shorter probe separations[2]. Surprisingly, these channels are localised in different regions across the ribbon width.

Here we demonstrate how this distribution of channels is consistent with a model accounting for both edge zigzag magnetism and asymmetric interfaces between the SiC and nanoribbon at each edge.

References

[1] J. Baringhaus et al, Nature 506 (2014) 349

Figure 2: (*Simulation:*) The segregated channels lead to quantised conductance steps as one of the transport probes sweeps across the ribbon width [2].