Computation of topological invariants in disordered systems using algebraic projectors

Pablo Piskunow^{1,5}

Dániel Varjas², Michel Fruchart^{3,4}, and Anton Akhmerov⁵

¹Catalan Institute of Nanoscience and Nanotechnology, Edifici ICN2 UAB Campus, Bellaterra 08193, Barcelona, Spain

²QuTech, Delft University of Technology, Postbus 5 2600AA, Delft, The Netherlands

³The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA

⁴Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300RA, Leiden, The Netherlands

⁵Kavli Institute of Nanoscience, Delft University of Technology, Postbus 5 2600AA, Delft, The Netherlands

pablo.perez.piskunow@gmail.com

We present a method to efficiently identify the topological phases of strongly disordered systems, such as alloys, disordered crystals, or amorphous systems. Our method extends the idea of real space markers of topological invariants[1]. A localized approximation of the band projector based on the kernel polynomial method[2], combined with the stochastic trace approximation and an appropriate choice of boundary conditions, builds up an efficient computation of topological invariants. We apply this systematic approach to the case of Pb_{1-x}Sn_xTe alloy, a three dimensional mirror Chern insulator [3, 4]. The efficiency of our computation allows us to obtain the mirror Chern number for systems with more than 10^7 degrees of freedom, and makes it possible to study large samples and compounds, where disorder plays a central role.

References

- R. Bianco and R. Resta, Phys. Rev. B 84 241106(R) (2011)
- [2] G. Weisse et al., Rev. Mod. Phys. 78 275-306 (2006)
- [3] Fu, L., Phys. Rev. Lett. 106 106802 (2011)
- [4] Hsieh, T. H. et al. Nature Commun. 3 (2012) 982.Y.
- [5] Tanaka et al., Nat. Phys. 8 800–803 (2012)

Figures

Figure 1: Surface spectra of a $20 \times 80 \times 80$ sample of Pb_{1-x}Sn_xTe in the trivial and topological phase. The presence of a gapless surface Dirac cone indicates the mirror Chern insulator phase.

