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Combining nano-optical systems with optically active two-dimensional materials has recently 

emerged as a fascinating topic to achieve new optical functionalities at the nanoscale [1]. In 

this contribution, we present investigations of light-matter interactions between transition metal 

dichalcogenide (TMD) monolayers and lithographically defined gold bowtie nanoantennas. By 

performing 3D-FDTD calculations, we tuned the design of the bowtie nanoantennas to match 

the dipolar resonance with the fundamental exciton transitions in a proximal MoSe2 monolayer. 

Fabricated bowtie nanoantennas show quality factors of Q = 5 and sub-10nm feed-gaps with 

estimated mode volumes as small as Vm = 2000nm3. Typical differential reflectance spectra 

recorded from individual TMD-bowtie nanostructures at room temperature reveal low- and high-

energy peaks separated by a dip at the energy of the uncoupled exciton. To elucidate the 

nature of characteristic spectral features, we use the coupled oscillator model [2], which result 

in coupling constants at zero detuning of g = 55 meV. This places our hybrid system in the weak-

coupling regime with spectra exhibiting Fano-like behavior. Furthermore, we demonstrate 

active control of the optical response by varying the polarization of the excitation light. The 

methods developed in our work contribute to on-demand realization of optimally coupled TMD-

nanoantenna systems that can be site-selectively addressed. This type of nanostructure could 

pave the way for on-chip actively controlled hybrid devices operating at elevated 

temperatures. 

Figure 1: (a) Schematic representation of a TMD-bowtie hybrid nanostructure. (b)(c) Differential 

reflectance spectra recorded from single nanoantennas ordered by detuning to the exciton transition.  

Data reveals an anti-crossing-like behaviour. (d) Control of the optical response by tuning the polarization 

of the excitation light. 

 

[1] Baranov et al. ACS Photonics 5(1), 2017, pp 24-42 

[2] Wu, Gray, Pelton, Optics Express 18(23), 2010, pp 23633-23645 
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