Scanning tunneling microscopy and spectroscopy of wet chemically synthesized porous graphene nanoribbons

Kaitlyn Parsons^{1,2}

Adrian Radocea^{1,3} Mohammad Mehdi Pour^{5,6} Tao Sun^{1,4} Narayana Aluru^{1,4} Alexander Sinitskii^{5,6} Joseph W. Lyding^{1,2}

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

kap2@illinois.edu

The bottom-up wet chemical synthesis of nanoribbons araphene (GNRs) opens interesting opportunities for tailoring the GNR with atomic structure precision [1]. Atomically precise porous GNRs are a new chemically synthesized variation for which the fabrication procedure yielding multiple pores in a single ribbon and the electronic details of the ribbon have not been reported.

In this work, porous GNRs are dry contact transferred in ultrahigh vacuum to clean silicon and III-V semiconducting substrates and examined using UHV scanning tunneling microscopy (STM) and spectroscopy (STS). STM imaging confirms the expected porous structure and indicates a unique electronic feature at the graphene nanopores, and STS measurements indicate a 2.0 eV bandgap.

These results are compared to first-principles DFT simulations in which an increased local density of states at the pores is predicted. A GW correction predicts a 2.89 eV bandgap. Illumination of pore effects in GNRs contributes to an increased understanding of the tunability of GNR electronic structure. Porous GNRs have potential applications in molecular filtration, detection and DNA sequencing.

References

 Vo, T. H., Shekhirev, M, Kunkel, D. A., Morton, M. D., Berglund, E., Kong, L., Wilson, P. M., Dowben, P. A., Enders, A., and Sinitskii, A., Nat. Commun., 5 (2014) 3189.

Figures

Figure 1: STM image of porous graphene nanoribbon on H:Si(100) ($V_{\text{bias}} = -2 \text{ V}, I = 0.1 \text{ nA}$).