Planar and van der Waals heterostructures for vertical tunnelling single electron transistors

Servet Ozdemir¹

Gwangwoo Kim², Sung-Soo Kim³, Jonghyuk Jeon², Seong In Yoon², Seokmo Hong⁴, Young Jin Cho⁵, Abhishek Misra¹, Jun Yin¹, Davit Ghazaryan¹, Mathew Holwill¹, Artem Mishchenko¹, Daria V. Andreeva⁶, Yong-Jin Kim⁷, Hu Young Jeong⁸, A-Rang Jang², Hyun-Jong Chung⁵, Andre K. Geim¹, Byeong-Hyeok Sohn³, Hyeon Suk Shin², Kostya S. Novoselov¹

¹School of Physics and Astronomy, The University of Manchester, UK ²Department of Energy Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea ³Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea ⁴Department of Chemistry, UNIST, Republic of Korea ⁵Department of Physics, Konkuk University, Republic of Korea ⁶Department of Materials Science and Engineering, NUS, Singapore ⁷Center for Multidimensional Carbon Materials, Institute of Basic Science (IBS), Republic of Korea ⁸UNIST Central Research Facilities (UCRF), UNIST, Ulsan 44919, Republic of Korea

servet.ozdemir@postgrad.manchester.ac.uk

Despite a rich choice of two-dimensional materials. which exists these davs. heterostructures, both vertical (van der in-plane, offer Waals) and an unprecedented control over the properties and functionalities of the resulted structures. Here we demonstrate simultaneous use of in-plane and van der Waals heterostructures to build vertical single electron tunnelling transistors. We grow graphene quantum dots inside the matrix of hexagonal boron nitride, which allows a dramatic reduction of the number of localised states along the perimeter of the quantum dots. Utilising hexagonal boron nitride tunnel barriers as contacts to graphene quantum dots we produce reproducible transistors which are non-dependent on the localised states, allowing larger flexibility when designing future devices.

References

[1] G. Kim et al., Nature Communications, 230 (2019)

Figures

Figure 1: hBN embedded graphene quantum dots obtained through a Pt assisted catalytic conversion process

Figure 2: Coloumb diamonds observed through the transport measurements of the hBN embedded graphene quantum dots assembled into a van der Waals heterostructure with hBN tunnelling contacts.