Electroluminescence from multi-particle exciton complexes in monolayer WSe$_2$

Aday J. Molina-Mendoza1
Matthias Paur,1 Rudolf Bratschitsch,2 Kenji Watanabe,3 Takashi Taniguchi,3 and Thomas Mueller1

1Vienna University of Technology, Institute of Photonics, Gußhausstraße 27-29, 1040 Vienna, Austria
2Institute of Physics and Center for Nanotechnology, University of Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
3National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan

aday.molina-mendoza@tuwien.ac.at

Light emission from higher-order correlated excitonic states has been recently reported in hBN-encapsulated monolayer WSe$_2$ upon optical excitation$^{[1-4]}$. These exciton complexes are found to be bound states of excitons residing in opposite valleys in momentum space, a promising feature that could be employed in applications such as quantum optoelectronics. However, electrically-driven light emission from such excitons species is still lacking. Here we report electroluminescence from bright and dark excitons, negatively charged trions and neutral and negatively charged biexcitons, generated by a pulsed gate voltage, in hexagonal boron nitride encapsulated monolayer WSe$_2$ with graphene as electrode. We observe that the relative intensity of the different exciton complexes strongly depends on the pulse parameters. We find the electroluminescence from charged biexcitons and dark excitons to be as narrow as 2.8 meV.

References

