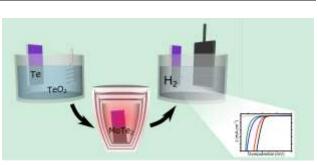
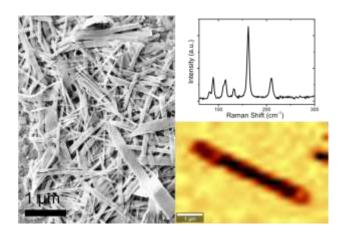
Growth of MoTe₂, WTe₂ and PtTe₂ films for electrical and electrochemical applications

John B. Mc Manus

Graeme Cunningham, Niall McEvoy, Conor P. Cullen, Bastien Balsamo, Dominik Horvath, Toby Hallam, Georg S. Düsberg


School of Chemistry, Trinity College Dublin, Dublin 2, Ireland

mcmanuj2@tcd.ie


The interest in transition metal ditellurides has arown hugely over the last number of years, having previously been much less explored than sulfide and selenide TMDs. This has led to reports of a host of interesting properties and applications such as MoTe₂ for phasechange applications, WTe₂ as a possible interconnect material and WTe₂ showing giant magnetoresistance.[1][2] This work demonstrates an efficient method to produce phase-pure 1T' MoTe₂ films at temperatures as low as 450°C. This is achieved through reaction of pre-deposited Mo and electrodeposited Te layers in an inert atmosphere.[3] The growth mechanism is further modified to produce films of WTe₂ and lesser studied PtTe₂.

The MoTe₂ films demonstrate promising electrocatalytic results for the hydrogen evolution reaction with competitive Tafel slopes below 70 mV dec⁻¹. The PtTe₂ films are investigated as a catalyst for oxygen reduction. While the morphology of the WTe₂ films result in interesting singlecrystalline flakes which are isolated and examined electrically.

Figures

Figure 1: Outline of fabrication and measurement process for 1T' MoTe₂ electrocatalytic films

Figure 2: SEM image of WTe₂ film, Raman spectra and intensity map (A₂ peak at 162cm⁻¹) of transferred single crystal WTe₂ flake

References

- [1] Duerloo et al., Nat. Comm., 5 (2014)
- [2] Song et al., Adv. Sci., 3 (2019)
- [3] Mc Manus et al. Appl. Energy Mater, 2 (2019) 521