The study of 2D CrPS₄ based synaptic device

Mi Jung Lee¹, Chansoo Yoon¹, Sung-Hoon Kim², Jae-Pyoung Ahn², Kyung-Ah Min³, Hyun Soo Choi³, Suklyun Hong³, Je-Geun Park⁴& Bae Ho Park^{1*}

¹Division of Quantum Phases & Devices, Department of Physics, Konkuk University, Seoul 05029, Korea ²Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Korea ³Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Korea ⁴Department of Physics and Astronomy, Seoul

National University, Seoul 08826, Korea

mj.lee0614@gmail.com

To emulate the learning of biological synapses and overcome the energy and throughput limitations of neuromorphic computing systems, we need to high sensitivity and reproducibility are crucial for transmitting information quickly and accurately. But, they usually present limited high power consumption. Therefore, electronic devices that can have want characteristics with minimal performance variations remain limited.[1,2] Here, we demonstrate that two-dimensional layered single-crystal chromium thiophosphate (CrPS₄) can be used as a non-volatile binary resistive switching memory, which shows good switching uniformity, retention and endurance as well as ultralow operation voltages and high on/off ratio. The memory device can be also used for artificial ultrasensitive synapses with analog resistive switching and good reproducibility. In addition, with the help of ex-situ electron microscopy and transmission density functional theory (DFT) calculations, we observed that the behavior resulted from a resistive switching mechanism based on the migration of Ag ions from the active electrode to the CrPS₄ layer with sulfur vacancies.

References

- Yuanyuan Shi et al. Nature electronics.
 1 (2018) 458
- [2] Duygu Kuzum et al. Nanotechnology 24 (2013) 382001

Figures

Figure 1:: Schematic image of 2D layered structure CrPS₄ and Ag/CrPS₄/Au synaptic device.