Ultra-High Gauge Factor in Graphene/MoS₂ Heterojunction Field Effect Transistor with Variable Schottky Barrier

llmin Lee

Woo Jong Yu

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

imlee90@skku.edu (I. Lee) micco21@skku.edu (W. J. Yu)

We demonstrate a highly sensitive strain sensor using a variable Schottky barrier in a MoS₂/graphene heterostructure field effect transistor (FET). The low density of states near the Dirac point in graphene allows large modulation of the graphene Fermi level and corresponding Schottky barrier in a MoS₂/graphene junction by strain-induced polarized charges of MoS₂.

As a result, the maximum Schottky barrier change $\Delta\Phi_{SB}$ and corresponding current change ratio under 0.17%-strain reach 152 meV and 1890, respectively, resulting in an ultra-high gauge factor of 1110087, which is approximately 1000 times higher than that of metal/TMDs junction strain sensors (1160) and 250 times higher than the highest known gauge factor of conventional strain sensors (4036). The ultra-high sensitivity of graphene/MoS₂ heterostructures FETs can open up a new dimension for next-generation electronic and mechanical-electronic devices.

References

- W. B. Dobie, and P. C. G. Isaac, Electric Resistance Strain Gauges (English Universities Press Limited, 1948).
- [2] S. Beeby, MEMS Mechanical Sensors (Artech House, 2004).
- [3] Kim, K. K. et al. Nano Lett. 15 (2015).
- [4] Z. Zhang. et al. . Nanoscale 7 (2015).
- [5] Bae, S.H. et al. Carbon NY 51 (2013).
- [6] Cao, J., Wang, Q. & Dai, H. J. Phys. Rev. Lett. 90 (2003).

- [7] W. Wu. et al. Nature. 514, 470 (2014).
- [8] S. Manzeli. et al. Nano Lett. 15 (2015).
- [9] J. Qi. et al. Nat. Commun. 6, 7430 (2015).
- [10] M. Y. Tsai. et al. ACS Appl. Mater. Interfaces 7 (2015).

Figures

Figure 1: (a) Schematic of the fabrication process of a flexible and transparent graphene/MoS₂ vdWHs FET. (b) Variation of Schottky barrier height with gate voltage under 0%, 0.07%, and 0.17% strain. (c) I-V_{ds} characteristics of graphene/MoS₂ vdWHs FET in a under various strain. (d) Transfer (I-V_{gs}) characteristic of the graphene/MoS₂ vdWHs FETs under no-strain, tensile strain, and compressive strain.

Material	Gate Voltage	Gauge Factor	Reference
Conventional Metal	0 V	- 5	[1]
Single crystal silicon	0 V 0	-200	[2]
Silver nanowire	0 V	> 20	[3]
ZnO	0 V 0	4036	[4]
Graphene	0 V	14	[5]
CNT	0 V	1000	[6]
Pd/MoS ₂	0 V	230	[7]
Au/Cr/MoS ₂	0 V	243	[8]
Au/MoS ₂	0 V	1160	[9]
Au/MoS ₂	20 V	40	[10]
Graphene/MoS ₂	-0.25 V -0.25 V	1110087 (flake McS ₂) 92064 (CVD McS ₂)	Our Work

Table 1: Performance of previous strain sensorsand our work.