Transition Metal Chalcogenides for Hydrogen Evolution Reaction

Soo Young Kim¹

Ho Won $Jang^2$

¹Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea ²Seoul National University, Seoul 08826, Republic of Korea

sooyoungkim@cau.ac.kr

transition Two-dimensional metal dichalcogenides (2D-TMDs), such as MoS₂ nanosheets (MeS₂-NS), and WS_2 are reported as efficient catalysts for hydrogen evolution reaction (HER), which can potentially replace the expensive platinum catalyst. We demonstrate a facile and efficient method for the synthesis of a metaldoped WS₂ nanoflower (NF) catalyst. We also report its application for the electrocatalytic HER. The flower-like WS2 particles were produced by a hydrothermal reaction and the WS₂ was doped with metal chlorides such as AuCl₃, AgCl, PtC₁₂, and PdCl₂, followed by reduction with sodium borohydride to form metal-doped WS₂ NFs. The Pd-doped WS₂ NF catalyst showed a high HER performance, having a Tafel slope of 54 mV/dec and an overpotential of -175 mV at -10 mA cm⁻². The improvement is attributed to the energy band alignment near the H⁺/H₂ reduction potential and the large surface area of the WS₂ NFs. In order to remove a heavy metal, 1T phase MeS₂ (1T-MeS₂) NS are synthesized by lithiumintercalation exfoliation method, subsequently being modified by amorphous MoS_x and WS_x ($MeS_x@MeS_2-NS$) through a solvothermal method. Interestingly, MeS_x@MeS₂-NS significantly improves the HER performance compared with bare MeS₂-NS as catalysts. Among these, MoSx@MoS₂ is observed to be the best combination for HER, with an onset potential and Tafel slope of 114 mV and 45.1 mV decade-1, respectively. The enhancement in the HER device using MeSx@MeS²-NS as the catalyst originates from vertically grown MeSx, which provides additional active sulfur

sites for the reaction, while inhibiting the restacking of MeS₂-NS. Furthermore, MoSx@MoS₂-NS shows stable catalytic properties for HER after the 1000 cyclic test, without any observable changes. Thus, this study presents a facile method for the synthesis of 2D-TMD catalyst for HER towards large-scale and long-term stability for practical application.

References

- A. Hasani, M. Tekalgne, Q. V. Le, H. W. Jang*, and S. Y. Kim*, Journal of Materials Chemistry A 7 (2019) p.430-454
- [2] T. P. Nguyen, Q. V. Le, S. Choi, T. H. Lee, S.-P. Hong, K. S. Choi, H. W. Jang, M. H. Lee, T. J. Park^{*}, and S. Y. Kim^{*}, Electrochimica Acta 292 (2018) p.136-141
- [3] A. Hasani, T. P. Nguyen, M. Takalgne, Q. V. Le, K. S. Choi, T. H. Lee, T. J. Park*, H. W. Jang*, and S. Y. Kim*, Applied Catalysis A 567 (2018) p.73-79

Figures

Figure 1: Schematic of the synthesis of $WS_2 NFs$ and metal-doped $WS_2 NFs$

Acknowledgement

This work was supported by NRF grants (2017K1A3A1A67014432, 017M3D1A1039379, 2018M3A9H1023141, and 2018R1A4A1022647).