Enhanced Thermoelectric Properties in a New Silicon Crystal Si₂₄ with Intrinsic Nanoscale Porous Structure

Seoung-Hun Kang¹

Kisung Chae¹, Seon-Myeong Choi¹, Duck Young Kim², and Young-Woo Son¹

¹Korea Institute for Advanced study, Seoul 02455, South Korea ²Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, People's Republic of China

hand@kias.re.kr, duckyoung.kim@hpstar.ac.cn.

Thermoelectric device is a promising nextgeneration energy solution owing to its capability to transform waste heat into useful electric energy, which can be realized in materials with high electric conductivities and low thermal conductivities. A recently synthesized silicon allotrope of Si₂₄ features highly anisotropic structure with nanometer-sized crvstal regular pores. Here, based on first-principles study without any empirical parameter we show that the slightly doped Si₂₄ can provide order-of-magnitude an enhanced thermoelectric figure of merit at room temperature, compared with the cubic diamond phase of silicon. We ascribe the enhancement to the intrinsic nanostructure formed by the nanopore array, which effectively hinders heat conduction while electric conductivity is maintained. This can be a viable option to enhance the thermoelectric figure of merit without further forming an extrinsic nanostructure. In addition, we propose a practical strategy to further diminish the thermal conductivity without affecting electric conductivity by confining rattling guest atoms in the pores.

References

Figure 1: Ball-and-stick models of the Si₂₄ crystal with (a) a perspective view and (b) orthogonal projection along the x-axis. (a) The primitive cell and the orthorhombic Bravais unitcell are shown as the red and black parallelepipeds, respectively. Twelve atoms in the primitive cell are shown in large blue balls, while the rest of the atoms are shown as small gray balls. (b) Continuous nanopores are shown where a one-dimensional array of Na ions (not shown) were confined for synthesis. (c) Thermoelectric figure of merit (ZT) of Si₂₄ along x-axis are shown in continuous lines as a function of temperature, and the ZT values for dSi are also shown as dashed lines for comparison. Positive and negative doping concentrations (n) refer to that of excess electron and hole, respectively. (d) The maximum values of ZT (ZT_{max}) for a varying temperature are shown as squares, of which the optimum doping concentrations (in 10²⁰ cm⁻³) for Si₂₄ are 0.21, 0.35, 0.44, 0.59 and 0.69 for increasing temperature; the values are 0.97, 1.81, 3.12, 3.43 and 4.03 for dSi. The enhancement (ratio of the ZT_{max} for Si₂₄ to dSi) is also plotted as orange circles.