Agglomeration-suppressed Chalcogenization of Mo-metal Films Using Thermally Cracked Small S- and Se-molecules at Low Temperature

Kwang Hoon Jung1,2, Sun Jin Yun1,2,*, Jung Wook Lim1,2, Hyun-Jun Chai1,2, Dae-Hyung Cho1, Yong-Duck Chung1,2, and Gayoung Kim1,2

1ICT Materials Research Group, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
2Department of Advanced Device Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea

Recently, for the large scale production and large area applications, large area growth methods of two dimensional (2D-) transition metal dichalcogenides (TMDCs) films utilizing chemical vapour deposition (CVD) techniques have been widely investigated. However, the conventional CVD methods require a high temperature and produce randomly distributed 2D-TMDCs crystallites on the substrate. Moreover, impurity incorporation from precursors cannot be avoided in the metal-organic CVD methods conducted at a relatively low temperature. Therefore, a facile and efficient fabrication method that can provide wafer-scale uniformity and low impurity incorporation as well as high film quality is required to enable the practical use of 2D-semiconductors.

In this study, we demonstrated a new strategy such as metal-agglomeration-suppressed growth (MASG) to obtain high quality MoS2 and MoSe2 films on wafer-scale substrates using thermally cracked small sulfur (S-) and selenium (Se-) molecules at 570 °C or lower. Sulfur vapour passed through the high temperature cracking zone (≥900 °C), in which the large S-molecules were cracked to smaller molecules, after which they reacted with the Mo film to form MoS2 films.

The growth procedure is illustrated in Figure 1. In the conventional sulfurization process (A), protruding islands were found on the films grown at a temperature of 500 °C or higher. On the other hand, in procedure B, the agglomeration of Mo precursor can be suppressed by pre-depositing S on the precursor film.

Figure 2(a) demonstrates the Raman spectra of MoS2 films grown at temperatures as low as 400 and 500 °C for 30 min. Figure 2(b) shows the Raman spectra of points 1-9 (in inset) of MoS2 grown on 6 inch SiO2/Si wafer at 570 °C. The E12g and A1g peak intensities at all points were almost the same. The thickness variation was less than 3.3 % on the wafer.

The results on the growth at lower temperature will be also presented to demonstrate the usefulness of the MASG method for the growth of high quality TMDCs on transparent substrates.

References

Figures

Figure 1: Procedures A (conventional) and B (MASG) for growing MoS2 films from thin Mo precursors using cracked S-molecules

Figure 2: Raman spectra of (a) 6.1 nm MoS2 films deposited at 400 and 500 °C for 30 min and (b) the high quality MoS2 film deposited at 570 °C (the numbers indicate the points marked on the photograph in inset)