Synthesis and characterization of PtSe₂ thin films

Oliver Hartwig¹
Kangho Lee¹, Chanyoung Yim¹, Maximilian Prechtl¹, Rita Siris¹, Nial McEvoy², Cormac O’Coileáin², Tanja Stimpel-Lindner¹, Georg S. Duesberg¹, ²*

¹ Institut für Physik (EIT²), Universität der Bundeswehr München, Neubiberg, Germany
² School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
duesberg@unibw.de

Platinumdiselenide (PtSe₂) is a layered group-ten transition metal dichalcogenide (TMD) with a number of remarkable properties. The bulk semimetal undergoes a transition to semiconductor with decreasing number of atomic layers. The few layered PtSe₂ possesses band gaps in the infrared region ideal for multiple applications. Further, PtSe₂ can be synthesized at low temperatures and has proven to be relatively air stable, both prerequisites for most applications.

In this study, we will outline the synthesis of PtSe₂ by thermally assisted conversion (TAC) of pre-patterned Pt films [1]. Different methods of Pt deposition are analysed in order to achieve high quality PtSe₂ layers. The composition and morphology of the polycrystalline PtSe₂ films is investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and scanning probe techniques. Achieving a high film quality is crucial in order to maximize the performance of devices such as chemical sensors [1], IR-Photodetectors [2] or pressure sensors [3].

References

[1] C. Yim et al., ACS Nano, 10 (2016), 9550

Figures

Figure 1: Direct sulfurization or selenization of pre-deposited transition-metal layers such as Platinum.

Figure 2: PtSe₂ based Gas sensor on a silicon chip. PtSe₂ channel in the center.