Single-step synthesis and doping of TMDCs

Toby Hallam1
J. McManus2, G. Cunningham2, S. Monaghan3, F. Gity3, C.P. Cullen2, L. Ansari3, N. McEvoy1, P.K. Hurley3, G. Duesberg4

1School of Physics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
2CRANN, Trinity College Dublin, Dublin, Ireland
3Tyndall National Institute, University College Cork, Cork, Ireland
4Institute of Physics, Universität der Bundeswehr, Neubiberg, Germany

In this presentation we review a selection of recent work on Thermally Assisted Conversion (TAC). In the TAC process transition-metal dichalcogenides (TMDCs) are synthesized by alloying transition metals with chalcogens in a CVD reactor. While the materials grown by this method are polycrystalline, the process is very simple and directly adaptable to a wide variety of TMDCs.

By controlling the pressure of Chalcogen vapour, TAC can be applied to grow a large number of different TMDCs. We will present a survey of materials that can be synthesized using this simple method. Materials are characterized through Electron microscopy, XPS, and Raman Spectroscopy. [1,2]

By using a mixture of transition metals in the TAC process, dopants can be very simply introduced to TMDCs. A study of Rhenium as an n-type dopant for MoS2 will be presented and contrasted with unintentional p-type doping by sulphur vacancies. Device measurements will be supported by a complimentary DFT study. [3]

By exploiting the simple TAC process, a number of novel approaches to device synthesis can be explored. As an example, we will show a single-step process for the growth of 1T’ MoTe2 electrodes for use in the Hydrogen Evolution Reaction (HER). [4]

References

Figures
Figure 1: a) Schematic of TAC process. b) SEM image showing polycrystalline MoS2 from TAC. c) AC-TEM image showing a monolayer MoS2 lattice with Re dopant atoms.