Phonon properties of MoS₂ thin films probed by Raman spectroscopy

A. P. Gertych

K. Czerniak, M. Zdrojek, J. Judek

Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland

arkadiusz.gertych@pw.edu.pl

Abstract

Raman spectroscopy has proven to be a fast, effective and reliable tool for studying properties of 2D materials and thin films [1]. Here, we present a study of the phonon properties of exfoliated thin MoS₂ films in the range from a few to several hundred nanometers, deposited on Si substrate.

We focus on phonon properties as a function of ambient temperature and local optical heating, which combined with numerical simulation of heat dissipation can lead to the extraction of total interface conductance and anisotropy of thermal conductivity [2]. All measurements were taken in an ambient atmosphere and special attention was paid to their stability and nondestructive character [3].

This work contributes to a better understanding of the thermal properties of thin films, which are crucial for heat management in thin film applications.

References

- Paillet, M., Parret, R., Sauvajol, J. L., & Colomban, P. Journal of Raman Spectroscopy 49 (2018): 8.
- Judek J., Gertych, A. P., Świniarski, M., Łapińska, A., Dużyńska, A., & Zdrojek, M. Scientific reports 5 (2015): 12422.
- [3] Judek, J., Gertych, A. P., Krajewski, M., Czerniak, K., Łapińska, A., Sobieski, J., & Zdrojek, M. Carbon, 124 (2017): 1.

Figure 1: Left: The size of the laser beam as a function of the distance from focal point. Picture shows intensity of Si mode at the metallization edge (knife edge technique). Right: Example of change in Raman spectrum of MoS₂ thin film as a function of distance from focal point (beam size).

Figure 2: Example of local optical heating of thin films with thicknesses 56, 120, and 251 nm. Change in position of A₁₉ mode on 1mW of incident laser power versus distance from focus (beam size).

Acknowledgments

This work was supported by the Polish Ministry of Science and Higher Education within the Diamond Grant programme (0217/DIA/2016/45)