Ultrafast valley-polarized charge transfer in a WSe₂/MoSe₂ heterostructure

Christoph Gadermaier¹

Stefano Dal Conte¹, Zilong Wang^{1,2,3}, Patrick Altmann¹, Wei Li⁴, Lavinia Ghirardini¹, Michele Celebrano¹, Marco Finazzi¹, Sandro De Silvestri^{1,5}, Deji Akinwande⁴, and Giulio Cerullo^{1,5}

¹Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy

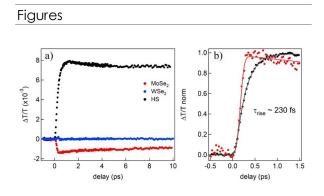
²Physics Department, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany ³Max Planck Institute of Quantum Optics, D-85748 Garching, Germany

⁴Microelectronics Research Centre, The University of Texas at Austin, USA

⁵IFN-CNR, Piazza L. da Vinci 32, I-20133 Milano, Italy

christoph.gadermaier@polimi.it

Abstract


Van der Waals heterostructures (HS), obtained by stacking two different monolayers on each other, have been intensively investigated because of their possible applications in electronics and optoelectronics [1]. Type II HS, where the valence band maximum and the conduction band minimum are in separate layers, allow efficient charge separation, particularly beneficial which is for photovoltaics based on atomically thin materials.

We use pump-probe spectroscopy to study the charge transfer dynamics in a type II WSe₂/MoSe₂ HS [2]. The pump beam is resonant with the smaller optical gap of the two monolayers (that of MoSe₂) and injects excitons in the K/K' valleys while the probe beam is resonant with the optical gap of WSe₂ to reveal any excited state population transfer from MoSe₂ to WSe₂. Excitation of an isolated MoSe₂ monolayer leads to a reduced absorption resonance (bleaching due to Pauli blocking) within the instrumental time resolution (100 fs). In the HS, on the other hand, we observe a clear delayed formation of the WSe₂ bleaching

signal. We attribute this finite rise time to a fast interlayer hole transfer occurring in less than 1 ps, which can be clearly timeresolved in our experiment. The hole transfer yields an interlayer exciton (i.e. a bound state of an electron and a hole residing in two separate layers). Moreover, time resolved circular dichroism shows that the valley polarization is transferred from the excited layer to the adjacent one. The relaxation dynamics of the interlayer exciton is considerably slower (i.e. ~1 ns) compared to the excitons in isolated monolayers.

References

- A. K. Geim and I. V. Grigorieva, Nature 499 (2013), 419.
- [2] Z. Wang et al. in preparation.

Figure 1: (a) Relative change $\Delta T/T$ of transmittance measured with pump and probe on resonance respectively with MoSe₂ and WSe₂ optical gap on MoSe₂ alone (red), WSe₂ alone (blue) and the WSe₂/MoSe₂ heterostructure (black). All the measurements are performed at T=9K. b) Normalized $\Box \Delta T/T$ traces at short delays in order to highlight the slower build up time of the HS signal compared to the single layer alone.