Nanohybrid TiO₂ decorated Graphene for Energy Applications

Laura Fornasini¹

Giacomo Magnani¹, Silvio Scaravonati¹, Giovanni Bertoni² , Daniele Pontiroli¹, Pier Paolo Lottici¹, Mauro Riccò¹ and Danilo Bersani¹

1- Università degli Studi di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Parco Area delle Scienze 7/A, Parma, Italy 2-IMEM-CNR, Parma, Italy

laura.fornasini@studenti.unipr.it

Nowadays, graphene has an increasing interest as a fundamental material for energy harvesting and storage devices, like batteries and supercapacitors (SCs).

TiO₂ is also considered to be a promising material for this purpose, due to its high specific energy density, low cost, nontoxicity and abundancy[1]. In order to further enhance performances of the electrochemical devices, one of the main successful strategies is combining graphene with transition metal oxides, which introduce pseudo-capacitive effects, allowing an improvement in specific capacities of the devices [2].

In this work we have investigated nanostructured materials based on

TiO₂-graphene in order to enhance performances of electrochemical energy storage devices.

Decoration of graphene with TiO₂ has been obtained by two different approaches: hydrothermal synthesis and laser conversion.

In the hydrothermal route, graphene obtained by thermal exfoliation of graphite oxide (TEGO) is combined with different TiO_2 precursors, such as titanium isopropoxide (TTIP), titanium hydride and titanium binolate ((BINOLate)₆ Ti₄ (µ3-OH)₄) [3], promoting the growth of TiO₂ nanoparticles (NPs) directly on the graphene layers.

The laser synthesis approach allows to obtain TiO₂-NPs on graphene (LSGO, LightScribe Graphene Oxide), starting from TTIP and graphite oxide (GO) with Lightscribe® technique [4]. The two mixed precursors have been deposited on a sheet of polyethylene terephthalate (PET) and converted into graphene decorated with TiO₂ by means of a DVD burner laser.

The nanocrystallinity and the morphology have been revealed by means of high resolution transmission electron microscopy, X-ray diffractions and Raman spectroscopy. We have also tested the materials as electrodes in lithium-ion batteries and SCs, giving the best result in the case of SCs

(TiO₂-LSGO) with values of specific capacity 300% higher than results on a pure LSGO supercapacitor [5].

The improvement of performances was ascribed to the combination of the graphene-based material with metallic oxides NPs, to form a hybrid nanoscalemixed composite electrode.

References

- [1] J.Wang et al., J.Phys.Chem.C 111(2007) 14925.
- [2] F.Beguin et al., Adv.Mater. 26(2014) 2219.
- [3] Pescitelli et al., J Organomet Chem 691 (2006) 2311.
- [4] M.F.El-Kady et al., Nat.Com. 4(2013) 1475.
- [5] Fornasini et al., man. in preparation

Figure

Figure 1: HRTEM of TiO₂ anatase nanoparticles on graphene sheets