Control of exciton-phonon interaction in monolayer WSe$_2$

Tetiana Borzda1
Daniele Vella2, Christoph Gadermaier3, Tsachi Livneh4

1Italian Institute of Technology @ CNST Organization, via Pascoli 70, Milan, Italy
2Fotona d.o.o, Stegne 7, Ljubljana, Slovenia
3Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy.
4Nuclear Research Center-Negev, Beer Sheva, Israel.

tetiana.borzda@iit.it

Abstract

Transition metal dichalcogenides (TMDs) form layered compounds [1], which recently came into the focus of vigorous research activity due to the various pathways to produce them in single- and few-layer form. Raman spectroscopy is a standard procedure in the characterization dimensionality of TMDs [2]. We study the three main Raman peaks of monolayer WSe$_2$ in a field effect transistor with polymer electrolyte gating, which offer a superior electrostatic control over the charge density in the channel. We find that positions, intensities and widths of these peaks change as a function of doping level due to exciton-phonon and electron-phonon interaction.

References

Figure 1: Evolution of Raman signal with voltage on electrolyte gate.