Morphological and Electrical Studies of Plasmatreated Transition Metal Dichalcogenide Nanosheets

Atsushi Ando¹

Jun Miyawaki¹, Masayo Horikawa¹, Naoya Okada¹, Toshitaka Kubo¹, Tetsuo Shimizu¹, Takahiro Mori¹, Kazuhiro Endo², Kazuhiko Endo¹ and Toshifumi Irisawa¹

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

²Kanazawa Institute of Technology, Hakusan, Ishikawa, Japan

atsushi-ando@aist.go.jp

Transition metal dichalcogenide (TMDC) semiconductors layered such as molybdenum disulfide (MoS₂) are gaining attention as next generation nanoelectronic materials [1]. For the realization of practical electronic devices of TMDC, it is important to establish each device fabrication process such as thinning (layer etching), device isolation (isolation of channel region), selective area doping and so on, and utilization of plasma processes are expected. In this work, we investigated the effect treatments of plasma on morphology and electrical properties of TMDC nanosheets.

Plasma treatments were performed with a resist strip system (O₂ plasma and N₂ plasma) or an "inward plasma" [2] system plasma and N_2 plasma). (CF₄ The morphology of the nanosheets surfaces after plasma treatments was evaluated by AFM. The crystallinity of the nanosheets after plasma treatments was checked by Raman measurements. Electrical properties of the nanosheets after plasma treatments were studied by characteristics of the FETs channels mechanically whose were exfoliated TMDC nanosheets on a 285 nm thick SiO₂ substrate with highly doped silicon [3].

Figure 1 is an example our investigations and shows morphological changes during O₂ plasma treatment to a tungsten diselenide (WSe₂) nanosheet. By O₂ plasma treatment, oxidation of WSe₂ and subsequent sublimation of the oxide occur. So, the etching of WSe₂ proceeds in a nearly layer-by-layer manner on WSe₂ surface. Dangling bonds generated by O₂ plasma treatment act p-type dopant behaviour in the characteristics of the WSe₂ FET.

The detailed results will be discussed at the presentation.

A part of this work was supported by JST CREST Grant Numbers JPMJCR16F3, Japan.

References

- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6 (2011) 147.
- S. Shimbori, Y. Shirayama, T.
 Kawakami, S. Yokosuka, K. Kashimura, T. Wataya, T. Shimizu, Y. Naitoh, and H.
 Tokumoto, J. Vac. Soc. Jpn., 53 (2010) 234.
- [3] N. Ninomiya, T Mori, N. Uchida, E. Watanabe, D. Tsuya, S. Moriyama, M. Tanaka, and A Ando, Jpn. J. Appl. Phys. 54 (2015) 046502.

Figure

Figure 1: AFM images of WSe₂ surface after O₂ plasma treatment: (a) after 0.4 min irradiation and (b) after additionally 0.1 min irradiation (Total 0.5 min).