

Designing nanostructures and active sites of 2D materials for electrochemical water splitting

Jian Zhang

Prof. Xinliang Feng Chair for Molecular Functional Materials Technische Universität Dresden, Germany **Email: jian.zhang1@tu-dresden.de**

June 27, 2018

Background

TECHNISCHE UNIVERSITÄT

DRESDEN

Energy systems for hydrogen utilization

DRESDEN concept

Onset overpotential: ~0 mV;

Overpotential at 10 mA/cm²: ~30 mV;

J. Zhang, et.al, Adv. Mater. 2018, accepted.

2D materials for hydrogen evolution

DRESDEN concept

Nat. Mater. 2012, 11, 963. Abundant active sites

Nano Lett., 2013, 13, 6222.

Rapid charge transfer

TMD: transition-metal dichalcogenides

State-of-the-art

I. Advanced Pt-based HER catalysts

(i) Pt-based hybrid catalysts.

Science, 2011, 334, 1256.

II. Pt-free catalysts

(i) Metal alloys-based HER catalysts

Electrochimica Acta, **2000**, *45*, 4151; *Energy Environ. Sci.*, **2011**, *4*, 3573; *ACS Catal.*, **2013**, *3*, 166.

(ii) Metal oxides, chalcogenides, carbides, phosphides, nitrides-based catalysts

Nat. Commun., 2014, 5, 4695; Science, 2007, 317, 100; Nat. Commun. 2016, 7, 11204;

Angew. Chem. Int. Ed., 2012, 51, 6131; J. Am. Chem. Soc., 2013, 135, 9267.

(iii) Carbon-based catalysts

Nat. Commun., **2016**, 7, 10667; Nat. Commun., **2015**, 6, 7992; Nat. Commun., **2015**, 6, 8668; Angew. Chem. Int. Ed., **2014**, 126, 4461.

MoS₂ electrocatalysts

MoS₂ for HER in basic solutions:

Large kinetic energy barrier of water dissociation on MoS₂ catalysts;
 Strong adsorption interaction of

the formed **OH** on MoS₂ catalysts.

MoS₂ catalysts exhibit poor HER activity in basic solution.

R. Subbaraman, et al, *Science* **2011**, *334*, 1256-1260; R. Subbaraman, et al, *Nat. Mater.* **2012**, *11*, 550-557.

Theoretical calculations

Ni doped MoS₂ (Ni-MoS₂):

- The kinetic energy barrier of water dissociation was decreased from 1.17 eV on MoS₂ to 0.66 eV on Ni-MoS₂;
- The desorption of ⁻OH was facilitated on Ni-MoS₂;

Dr. Tao Wang, SunCat center, Stanford University, USA

	$\triangle G(H_2O) (eV)$	G(OH) (eV)	$\triangle G(H) (eV)$
MoS ₂	1.17	-5.24	0.60
Ni-MoS ₂	0.66	-3.46	-0.10
Co-MoS ₂	0.76	-3.46	-0.06
Fe-MoS ₂	0.96	-3.36	0.13

J. Zhang, et.al, Energy Environ. Sci., 2016, 9, 2789.

Morphology

Dr. Pan Liu and Prof. Mingwei Chen, Tohoku University, Japan.

- Thichness: < 10 nm</p>
- Ni atoms were doped into crystalline
 MoS₂ nanosheets.
- Overpotential at 10 mA/cm²: 98 mV.

J. Zhang, et.al, Energy Environ. Sci., 2016, 9, 2789.

Ni content

J. Zhang, et.al, Energy Environ. Sci., **2016**, *9*, 2789.

Interface Engineering: MoS₂/Ni₃S₂ Concept

J. Zhang, et al, Angew. Chem. Int. Ed. 2016, 128, 6814.

CHNISCHE IVERSITÄT

HER activity

Theoretical calculations

J. Zhang, et al, Angew. Chem. Int. Ed. 2016, 128,6814.

NiFe-LDH

Fe³⁺ centers: rather weak binding ability for hydrogen

Science, **2011**, *334*, 1256; *Science*, **2017**, *355*, 146.

NiFeRu-LDH

Dr. Pan Liu and Prof. Mingwei Chen, Tohoku University, Japan.

HER activity

G. Chen, et.al, Adv. Mater. 2018, 30, 1706279.

OER and Overall water splitting

OER overpotential: 225 mV @ 10 mA cm⁻²
 Overall water splitting overpotential: 290 mV at 10 mA cm⁻²

Active sites

16% Ru in NiFeRu-LDH;
 NiFe-LDH, NiFeRu-LDH, NiFeAl-LDH, NiFeCo-LDH, NiFeV-LDH.

Theoretical calculations

Accelerated Water dissociation kinetics.

Dr. Tao Wang, SunCat center, Stanford University, USA

Conclusions and outlook

- Water dissociation is the rate-limited step in alkaline solution;
- MoNi-based active sites can largely lower the kinetic energy barrier of the Volmer;
- Understanding the alkaline HER mechanism and probe the adsorption states of H_2O , H and OH intermediates;
- Engineering the water dissociation active sites for other 2D materials systems towards outstanding HER performance.

Acknowledgement

Guangbo Chen Panpan Zhang Faxing Wang Xia Wang Mino Borrelli Dr. Gang Wang Dr. Hanjun Sun Dr. Sheng Yang Prof. Xinliang Feng (TUD) Prof. Pan Liu (SJTU) Prof. Mingwei Chen (Johns Hopkins University) Prof. Ehrenfried Zschech (IKTS) Prof. Klaus Muellen (MPIP) Prof. Inez Weidinger Dr. Tao Wang (Stanford University) Dr. Zhongquan Liao (IKTS) Dr. Bernd Rellinghaus (IFW) Dr. Darius Pohl (IFW)

Funding Supports

DFG, ERC 2DMATER, Graphene Flagship, Cfaed Cluster, ESF, MaxNet Energy

dresden center for **nanoanalysis**

European Research Council Established by the European Commission

MAX-PLANCK-GESELLSCHAFT

Thanks for your attention