The ultrafast dynamics and conductivity of photoexcited graphene

The Institute of Photonic Sciences

Klaas-Jan Tielrooij

Dresden, 27 June 2018

Acknowledgements

Dr. Andrea Tomadin Prof. Marco Polini

Dr. Sam Hornett Prof. Euan Hendry

The Institute of Photonic Sciences

Prof. Frank Koppens

Photoexcited graphene

- Heat from absorbed light to electron system
- Ultra-small heat capacity
- => Large increase in electron temperature!

Photoexcited graphene

Heat from absorbed light to electron system

Ultra-small heat capacity

=> Large increase in electron temperature!

Data communication

Photodetection

Photoexcited graphene

- Heat from absorbed light to electron system
- Ultra-small heat capacity
- => Large increase in electron temperature!

Data communication

Photodetection

Heating dynamics depend on Fermi energy?

Mechanism of modified "hot" conductivity?

Optical pump - terahertz probe

 $\hbar\omega$

Carrier distribution

$$\sigma_{\rm THz}(t) = -\frac{e^2 v_{\rm F}}{2} \sum_{\lambda} \int_0^\infty d\varepsilon v(\varepsilon) \frac{\tau(\varepsilon; t)}{1 - i\omega\tau(\varepsilon; t)} \int_{-\infty}^{\infty} d\varepsilon v(\varepsilon) \frac{\tau(\varepsilon; t)}{1 - i\omega\tau(\varepsilon; t)}$$

Optical pump - terahertz probe

2

Optical pump - terahertz probe

See also: Nano Lett. 14, 1578 (2014) Nano Lett. 14, 5839 (2014) Phys. Rev. Lett. 113, 056602 (2014)

Heating dynamics

Constant number of Conduction Band carriers

Heating dynamics

Carrier distribution

Heating dynamics

Increase in number of Conduction Band carriers

Photoexcited "hot" conductivity

- **Only purely electronic effects taken into account:**
 - Long-range Coulomb impurity scattering

Photoexcited "hot" conductivity

Increased "hot" conductivity mainly due to additional carriers

Photoexcited "hot" conductivity

Increased "hot" conductivity mainly due to additional carriers

Decreased "hot" conductivity mainly due to decreased screening

Doped graphene ($E_F = 0.4 \text{ eV}$)

Highly efficient flow of energy from photons to electron system!

Possible: carrier multiplication

Undoped graphene ($E_F = 0.05 \text{ eV}$)

See also Theory: Nano Lett. **10**, 4839 (2010) Experiment: Nano Lett. **14**, 5371 (2014)

Doped grap

Possible: carrier multiplication

hene (
$$E_{F} = 0.4 \text{ eV}$$
)

See also Theory: Nat. Phys. 9, 248 (2013) Experiment: Science Adv. 2, e160002 (2016)

Possible: hot-carrier multiplication

Undoped graphene ($E_F = 0.05 eV$)

Possible: carrier multiplication

Doped graphene (E_F = 0.4 eV)

Possible: hot-carrier multiplication

CM and hot-CM are the result of efficient heating!

Summary

Efficient intraband heating

Hot-carrier multiplication possible

Decreased conductivity mainly due to reduced **Increased conductivity mainly due to** additional CB carriers screening

Efficient interband heating

Carrier multiplication possible

Data communication

Photodetection

THz harmonics via carrier heating!

3f

5f

THz harmonics via carrier heating!

THz harmonics via carrier heating!

Summary

Efficient intraband heating

Hot-carrier multiplication possible

Decreased conductivity mainly due to reduced **Increased conductivity mainly due to** additional CB carriers screening

Efficient interband heating

Carrier multiplication possible

