

Graphene Oxide-Copper Plasmonic Interfaces for SPR Biosensing

Yu.V. Stebunov¹, D.I. Yakubovsky¹, D.Yu. Fedyanin¹, A.V. Arsenin¹, and V.S. Volkov^{1,2}

¹Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141702, Russia ²GrapheneTek LLC, Skolkovo Innovation Center, Moscow 143026, Russia ³University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

stebunov@phystech.edu, http://nano.phystech.edu/

27 June 2018, Dresden

Copper and graphene oxide for plasmonic biosensing

Copper

- Good optical properties in visible range
- Variety of structures for plasmonic biosensors (films, WG, resonators)
- Low cost
- Compatible with CMOS
- Ideal material for massproduction

Graphene oxide

- Deposition on various substrates
- 2D material high surface area
- Pi-stacking immobilization
- Easy manufacturing process
- Low optical absorption
- Oxygen-containing functional groups: COOH, OH, C=O, C-O-C

Copper-based SPR biosensing

SPR sensor chip

- Biosensors format: instrument and sensor chips
- Simple theoretical description
- Thin film structures (no lithography and etching)
- Wide range of developed protocols

Stebunov et al., Langmuir 34 (15), 2018

Optical properties of thin copper films

Structures for ellipsometry measurements

AFM images of copper films

Optical properties of thin copper films

Structures for ellipsometry measurements

AFM images of copper films

Dielectric constants

Simulation of SPR excitation

Simulation of SPR excitation

SPR measurements – salt testing

- Phase measurements
- 0.5% NaCl injections

Copper-based SPR chips

BiOptix Accolade 104SA

SPR measurements – salt testing

- Phase measurements
- 0.5% NaCl injections

Copper-based SPR chips

BiOptix Accolade 104SA

Sensitivity to RI changes

Graphene oxide linking layers for SPR analysis

80% of one-atomic-layer flakes (0.3-0.7 um)

Uniform GO film

Graphene oxide linking layers for SPR analysis

80% of one-atomic-layer flakes (0.3-0.7 um)

Uniform GO film

Ellipsometry of GO film

Refractive index at 635 nm

Graphene: $n_{\rm gr} = 3$, $k_{\rm gr} = 1.16$ GO: $n_{\rm GO} = 1.82$, $k_{\rm GO} = 0.184$

Neutravidin-biotin interaction

Neutravidin-coated surface is used for immobilization of biotinylated ligands such as proteins, peptides, nucleic acids, etc

- GO film with the thickness of 5 nm
- neutravidin selectively binding the molecules with biotin residue

D2, 50bp oligonucleotide sequence complementary to D1

Neutravidin immobilization

Neutravidin-biotin interaction

Neutravidin-coated surface is used for immobilization of biotinylated ligands such as proteins, peptides, nucleic acids, etc

- GO film with the thickness of 5 nm
- neutravidin selectively binding the molecules with biotin residue

D2, 50bp oligonucleotide sequence complementary to D1

Oligonucleotide interactions

Summary

- Copper can substitute gold in plasmonic biosensors
- Dielectric coatings protect copper from oxidation and increase biosensing sensitivity
- Biomolecule immobilization using graphene oxide linking layers
- Copper and GO-based interfaces will open the way towards the integration of biosensors into consumer electronics

Stebunov et al., Langmuir 34, 4681 (2018)

Thank you for your attention!

E-mail: stebunov@phystech.edu, Web: nano.phystech.edu

