Graphene devices decorated with few-atom clusters probing and exploiting the size-specific interaction

Jeroen E. Scheerder

Supervisor:prof. dr. Joris Van de VondelCo-supervisor:prof. dr. Ewald Janssens

KU LEUVEN 28th June 2018

The framework Graphene – 'the material of the millennium'

1/8 [2] Schedin *et al, Nature Mat.* **6**, 652 (2007)

[3] D. Van Tuan *et al, PRL 117*, 176602 (2016) **KU LEUVEN**

The framework *Clusters – every atom counts*

Cluster deposition Ingredient I – High control

Graphene FET Devices <u>Ingredient II – field effect measurements</u>

4/8 [1] N. Reckinger *et al*, Nanoscale **8**, 18751 (2016)

Clusters on graphene

Let's deposit!

5/8 [1] J.E. Scheerder et al, Nanoscale 9, 10494 (2017) [2] S. Adam et al, PNAS 104, 18392 (2007) KU LEUVEN

Clusters on graphene What can we do with it? - Catalysis

- Graphene= direct charge transfer probe
- Oxygen adsorption to Au-cluster = activation for catalysis!

[2]

Clusters on graphene Size – effect !

DFT computation:

[*] thanks to prof. H.-P. Cheng, Dr. S. Liu (UFlorida) **KU LEUVEN**

Clusters on graphene

The scientific roadmap

8/8 [1] E. Tyo, S. Vajda, Nat. Nanotech. 10, 577 (2015) [2] D. Deng et al, Nat. Nanotech. 11, 218 (2016) KULEUVEN

Thank you for attending !

prof. J. Van de Vondel, prof. E. Janssens Dr. Thomas Picot, V.S. Zharinov, W. Keijers, Dr. B. Raes, R. Panghotra

prof. J.-F. Colomer, Dr. N. Reckinger

prof. B. Puers, Dr. F. Ceyssens

prof. H.-P. Cheng, Dr. S. Liu

KU LEUVEN 28th June 2018

APPENDIX

APPENDIX FET and `Dirac' Cone

APPENDIX how do they look like?

Single clusters or sub-nm entities must be interacting !

APPENDIX Charging effect

APPENDIX Charging effect

APPENDIX DFT simulation

APPENDIX DFT simulation

APPENDIX DFT simulation

		O ₂				
	Graphene	Au ₃	Corner 1	Corner 2	Face 1	Face 2
B. charge transfer [<i>e</i>]	-0.269	-0.504	0.331	0.280	0.078	0.085
	-0.773		0.773			
		0 ₂				
	Graphene	Au6	Corner 1	Corner	2 Co	orner 3
B. charge transfer [<i>e</i>]	-0.337	-0.403	0.252	0.254	. ().233
	-0.740		0.740			

The framework *Clusters – every atom counts*

[2] E. Janssens, P. Lievens et al, *Chem. Eu. J.* **21**, 15256 (2015)

KU LEUVEN

2/8 [1] A. WOOdnam et al, J. Am. Chem. Soc. **135**, 1727 (2013)